CC BY-NC-ND 4.0 · Dtsch Med Wochenschr 2023; 148(10): 627-635
DOI: 10.1055/a-1516-2731
Übersicht

HDL – Quo vadis

HDL – Quo vadis
Arnold von Eckardstein
,
Winfried März
,
Ulrich Laufs

Niedrige Plasmaspiegel von HDL-Cholesterin (HDL-C) sind in epidemiologischen Studien mit einem erhöhten Risiko für atherosklerotische kardiovaskuläre Erkrankungen (ASCVD) assoziiert. In Zellkultur- und Tiermodellen üben HDL-Partikel potenziell antiatherogene Wirkungen aus. Alle bisher getesteten Medikamente zur HDL-C-Erhöhung waren nicht in der Lage, zusätzlich zu Statinen kardiovaskuläre Ereignisse zu verhüten. Auch Ergebnisse genetischer Studien stellten die kausale Rolle von für ASCVD in Frage. Allerdings reflektiert HDL-C nicht die Funktionalität von HDL-Partikeln.

Abstract

Many epidemiological studies found low plasma levels of high-density lipoprotein (HDL) cholesterol (HDL-C) associated with an increased risk of atherosclerotic cardiovascular disease (ASCVD). In cell culture and animal models, HDL particles show many anti-atherogenic actions. However, until now, clinical trials did not find any prevention of ASCVD events by drugs elevating HDL-C levels, at least not beyond statins. Also, genetic studies show no associations of HDL-C levels altering variants with cardiovascular risk. Therefore, the causal role and clinical benefit of HDL-C elevation in ASCVD are questioned. However, the interpretation of previous data has important limitations: First, the inverse relationship of HDL-C with the risk of ASCVD is limited to concentrations < 60 mg/dl (< 1.5 mmol/l). Higher concentrations do not reduce the risk of ASCVD events and are even associated with increased mortality. Therefore, neither the higher-the-better strategies of earlier drug developments nor the assumption of linear cause-and-effect relationships in Mendelian randomization trials are justified. Second, most of the drugs tested so far do not act specifically on HDL metabolism. Therefore, the futile endpoint studies question the clinical benefit of the investigated drugs, but not the importance of HDL in ASCVD. Third, the vascular functions of HDL are not exerted by its cholesterol content (i.e. HDL-C), but by a variety of other molecules. Comprehensive knowledge of the structure-function-disease relationships of HDL particles and their molecules is a prerequisite for testing their physiological and pathogenic relevance and possibly for optimizing the diagnosis and treatment of persons with HDL-associated risk of ASCVD, but also for other diseases, such as diabetes, chronic kidney disease, infections, autoimmune and neurodegenerative diseases.

Kernaussagen
  • Niedriges HDL-C ist ein Risikomarker; hohes HDL-C ist nicht protektiv; der HDL/LDL-Quotient ist obsolet.

  • Eine lebensstilassoziierte HDL-C-Erhöhung durch Nichtrauchen und körperliche Aktivität ist mit einer Reduktion von ASCVD assoziiert.

  • HDL-C ist, anders als LDL-C oder Non-HDL-C, kein Ziel für medikamentöse Therapien zur Reduktion des ASCVD-Risikos.

  • Aktuelle Forschungsergebnisse zur Bestimmung der HDL-Funktion sind interessant, aber aktuell noch ohne klinische Konsequenz.

  • Dasselbe gilt für die epidemiologischen und genetischen Beziehungen von HDL-C zu nicht kardiovaskulären Erkrankungen.



Publication History

Article published online:
20 April 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial-License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/).

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 von Eckardstein A, Nordestgaard BG, Remaley AT. et al. High-density lipoprotein revisited: biological functions and clinical relevance. Eur Heart J 2022; ehac605
  • 2 Madsen CM, Varbo A, Nordestgaard BG. Novel Insights From Human Studies on the Role of High-Density Lipoprotein in Mortality and Noncardiovascular Disease. Arterioscler Thromb Vasc Biol 2021; 41: 128-140
  • 3 Rohatgi A, Westerterp M, von Eckardstein A. et al. HDL in the 21st Century: A Multifunctional Roadmap for Future HDL Research. Circulation 2021; 143: 2293-2309
  • 4 Hoekstra M, Van Eck M. Mouse models of disturbed HDL metabolism. Handb Exp Pharmacol 2015; 224: 301-336
  • 5 He H, Hong K, Liu L. Artificial high-density lipoprotein- mimicking nanotherapeutics for the treatment of cardiovascular diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2021; 13: e1737
  • 6 Zanoni P, Khetarpal SA, Larach DB. et al. Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease. Science 2016; 351: 1166-1171
  • 7 Langsted A, Jensen AMR, Varbo A. et al. Low High-Density Lipoprotein Cholesterol to Monitor Long-Term Average Increased Triglycerides. J Clin Endocrinol Metab 2020; 105: dgz265
  • 8 Di Angelantonio E, Sarwar N, Perry P. Emerging Risk Factors Collaboration. et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA 2009; 302: 1993-2000
  • 9 von Eckardstein A. High Density Lipoproteins: Is There a Comeback as a Therapeutic Target?. In: von Eckardstein A, Binder CJ. Prevention and Treatment of Atherosclerosis: Improving State-of-the-Art Management and Search for Novel Targets [Internet]. Cham (CH): Springer; 2022
  • 10 Kjeldsen EW, Thomassen JQ, Frikke-Schmidt R. HDL cholesterol concentrations and risk of atherosclerotic cardiovascular disease – Insights from randomized clinical trials and human genetics. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867: 159063
  • 11 Das Pradhan A, Glynn RJ, Fruchart JC. et al. Triglyceride Lowering with Pemafibrate to Reduce Cardiovascular Risk. N Engl J Med 2022; 387: 1923-1934
  • 12 Nicholls SJ, Ray KK, Nelson AJ. et al. Can we revive CETP-inhibitors for the prevention of cardiovascular disease?. Curr Opin Lipidol 2022; 33: 319-325
  • 13 Gibson CM, Kastelein JJP, Phillips AT. et al. Rationale and design of ApoA-I Event Reducing in Ischemic Syndromes II (AEGIS-II): A phase 3, multicenter, double-blind, randomized, placebo- controlled, parallel-group study to investigate the efficacy and safety of CSL112 in subjects after acute myocardial infarction. Am Heart J 2021; 231: 121-127
  • 14 Nicholls SJ, Ditmarsch M, Kastelein JJ. et al. Lipid lowering effects of the CETP inhibitor obicetrapib in combination with high-intensity statins: a randomized phase 2 trial. Nat Med 2022; 28: 1672-1678
  • 15 Keene D, Price C, Shun-Shin MJ. et al. Effect on cardiovascular risk of high density lipoprotein targeted drug treatments niacin, fibrates, and CETP inhibitors: meta-analysis of randomised controlled trials including 117,411 patients. BMJ 2014; 349: g4379
  • 16 Ference BA, Kastelein JJP, Ginsberg HN. et al. Association of Genetic Variants Related to CETP Inhibitors and Statins With Lipoprotein Levels and Cardiovascular Risk. JAMA 2017; 318: 947-956
  • 17 Quesada JA, Bertomeu-González V, Orozco-Beltrán D. et al. The benefits of measuring the size and number of lipoprotein particles for cardiovascular risk prediction: A systematic review and meta-analysis. 2022;
  • 18 Soria-Florido MT, Schröder H, Grau M. et al. High density lipoprotein functionality and cardiovascular events and mortality: A systematic review and meta-analysis. Atherosclerosis 2020; 302: 36-42
  • 19 Jensen MK, Aroner SA, Mukamal KJ. et al. High-Density Lipoprotein Subspecies Defined by Presence of Apolipoprotein C-III and Incident Coronary Heart Disease in Four Cohorts. Circulation 2018; 137: 1364-1373
  • 20 Frey K, von Eckardstein A. HDL, heart disease, and the lung. J Lipid Res 2022; 63: 100217
  • 21 Zewinger S, Drechsler C, Kleber ME. et al. Serum amyloid A: high-density lipoproteins interaction and cardiovascular risk. Eur Heart J 2015; 36: 3007-3016
  • 22 Zewinger S, Kleber ME, Rohrer L. et al. Symmetric dimethylarginine, high-density lipoproteins and cardiovascular disease. Eur Heart J 2017; 38: 1597-1607
  • 23 Vollenweider P, von Eckardstein A, Widmann C. HDLs, diabetes, and metabolic syndrome. Handb Exp Pharmacol 2015; 224: 405-421
  • 24 Manandhar B, Cochran BJ, Rye KA. Role of High-Density Lipoproteins in Cholesterol Homeostasis and Glycemic Control. J Am Heart Assoc 2020; 9: e013531
  • 25 Dangas K, Navar AM, Kastelein JJP. The effect of CETP inhibitors on new- onset diabetes: a systematic review and meta-analysis. Eur Heart J Cardiovasc Pharmacother 2022; 8: 622-632
  • 26 Strazzella A, Ossoli A, Calabresi L. High-Density Lipoproteins and the Kidney. Cells 2021; 10: 764
  • 27 Trinder M, Wang Y, Madsen CM. et al. Inhibition of Cholesteryl Ester Transfer Protein Preserves High-Density Lipoprotein Cholesterol and Improves Survival in Sepsis. Circulation 2021; 143: 921-934
  • 28 Meilhac O, Tanaka S, Couret D. High-Density Lipoproteins Are Bug Scavengers. Biomolecules 2020; 10: 598
  • 29 Friedman DJ, Pollak MR. APOL1 and Kidney Disease: From Genetics to Biology. Annu Rev Physiol 2020; 82: 323-342
  • 30 Velagapudi S, Schraml P, Yalcinkaya M. et al. Scavenger receptor BI promotes cytoplasmic accumulation of lipoproteins in clear-cell renal cell carcinoma. J Lipid Res 2018; 59: 2188-2201
  • 31 Morin EE, Li XA, Schwendeman A. HDL in Endocrine Carcinomas: Biomarker, Drug Carrier, and Potential Therapeutic. Front Endocrinol (Lausanne) 2018; 9: 715
  • 32 Behl T, Kaur I, Sehgal A. et al. The Interplay of ABC Transporters in Aβ Translocation and Cholesterol Metabolism: Implicating Their Roles in Alzheimer's Disease. Mol Neurobiol 2021; 58: 1564-1582
  • 33 Storti F, Klee K, Todorova V. et al. Impaired ABCA1/ABCG1-mediated lipid efflux in the mouse retinal pigment epithelium (RPE) leads to retinal degeneration. Elife 2019; 8: e45100
  • 34 Mach F, Baigent C, Catapano AL. et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J 2020; 41: 111-188
  • 35 Martins J, Rossouw HM, Pillay TS. How should low-density lipoprotein cholesterol be calculated in 2022?. Curr Opin Lipidol 2022; 33: 237-256