Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2021; 53(21): 4030-4041
DOI: 10.1055/a-1526-7839
DOI: 10.1055/a-1526-7839
feature
Facile Synthesis of Polysubstituted 2-Pyrones via TfOH-Mediated Ring Expansion of 2-Acylcyclopropane-1-carboxylates
This work was sponsored by the Shanghai Pujiang Program (Grant No. 19PJ1402700), the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, the National Natural Science Foundation of China (No. 22071059), and the East China Normal University (ECNU).
Abstract
A facile route to polysubstituted 2-pyrones from readily available 2-acylcyclopropane-1-aryl-1-carboxylates mediated by TfOH is reported. The strongly donating 1-aryl group is important for directing the C–C bond cleavage of the donor-acceptor cyclopropane ring, which then leads to the formation of the 2-pyrone ring through lactonization.
Key words
carbocycles - heterocycles - ring expansion - Brønsted acid - synthetic methods - cyclopropanes - 2-pyronesSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1526-7839.
- Supporting Information
Publication History
Received: 19 May 2021
Accepted after revision: 10 June 2021
Accepted Manuscript online:
10 June 2021
Article published online:
08 July 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Sunazuka T, Omura S. Chem. Rev. 2005; 105: 4559
- 1b Goel A, Ram VJ. Tetrahedron 2009; 65: 7865
- 1c McGlacken GP, Fairlamb IJ. S. J. Nat. Prod. 2005; 22: 369
- 1d Stout EP, Hasemeyer AP, Lane AL, Davenport TM, Engel S, Hay ME, Fairchild CR, Prudhomme J, Le Roch K, Aalbersberg W, Kubanek J. Org. Lett. 2009; 11: 225
- 1e Praveen C, Ayyanar A, Perumal PT. Bioorg. Med. Chem. Lett. 2011; 21: 4170
- 1f Dong Y, Goto KN, Lai CY, Natschke SL. M, Bastow KF, Lee KH. Bioorg. Med. Chem. Lett. 2011; 21: 2341
- 1g Shankar R, Chakravarti B, Singh US, Ansari MI, Deshpande S, Dwivedi SK. D, Bid HK, Konwar R, Kharkwal G, Chandra V, Dwivedi A, Hajela K. Bioorg. Med. Chem. 2009; 17: 3847
- 1h Fairlamb IJ. S, Morrison LR, Dickinson JM, Lu FJ, Schmidt JP. Bioorg. Med. Chem. 2004; 12: 4285
- 1i Rao PN. P, Uddin MJ, Knaus EE. J. Med. Chem. 2004; 47: 3972
- 1j Marrison LR, Dickinson JM, Fairlamb LJ. Bioorg. Med. Chem. Lett. 2002; 12: 3509
- 1k Rao PN. P, Amini PM, Li H, Habeeb AG, Knaus EE. J. Med. Chem. 2003; 46: 4872
- 1l Lee I.-K, Yun B.-S. J. Antibiot. 2011; 64: 349
- 1m Lee JS. Mar. Drugs 2015; 13: 1581
- 1n Fürstner A. Angew. Chem. Int. Ed. 2018; 57: 4215
- 2a Palani V, Perea MA, Gardner KE, Sarpong R. Chem. Sci. 2021; 12: 1528
- 2b Chinta BS, Lee D, Hoye TR. Org. Lett. 2021; 23: 2189
- 2c Cole CJ. F, Fuentes L, Snyder SA. Chem. Sci. 2020; 11: 2175
- 2d Zhang X, Beaudry CM. Org. Lett. 2020; 22: 6086
- 2e Disadee W, Lekky A, Ruchirawat S. J. Org. Chem. 2020; 85: 1802
- 2f Liang X.-W, Zhao Y, Si X.-G, Xu M.-M, Tan J.-H, Zhang Z.-M, Zheng C.-G, Zheng C, Cai Q. Angew. Chem. Int. Ed. 2019; 58: 14562
- 2g Cai Q. Chin. J. Chem. 2019; 37: 946
- 3a Zheng P, Li C, Mou C, Pan D, Wu S, Xue W, Jin Z, Chi YR. Asian J. Org. Chem. 2019; 8: 1067
- 3b Xu L.-C, Zhou P, Li J.-Z, Hao W.-J, Tu S.-J, Jiang B. Org. Chem. Front. 2018; 5: 753
- 3c Kim HY, Oh K. Org. Lett. 2017; 19: 4904
- 3d Minakata S, Inada H, Komatsu M, Kajii H, Ohmori Y, Tsumura M, Namura K. Chem. Lett. 2008; 37: 248
- 3e Usachev BI, Obydennov DL, Röschenthaler GV, Sosnovskikh VY. Org. Lett. 2008; 10: 2857
- 3f Zhu XF, Schaffner AP, Li RC, Kwon O. Org. Lett. 2005; 7: 2977
- 3g Katritzky AR, Wang Z, Wang M, Hall CD, Suzuki K. J. Org. Chem. 2005; 70: 4854
- 3h Ma S, Yu S, Yin S. J. Org. Chem. 2003; 68: 8996
- 3i Yao T, Larock RC. J. Org. Chem. 2003; 68: 5936
- 3j Ma S, Yin S, Li L, Tao F. Org. Lett. 2002; 4: 505
- 3k Hirano K, Minakata S, Komatsu M. Bull. Chem. Soc. Jpn. 2001; 74: 1567
- 4a Zhou P, Yang W.-T, Rahman AU, Li G, Jiang B. J. Org. Chem. 2020; 85: 360
- 4b Matsuda T, Suzuki K. RSC Adv. 2014; 4: 37138
- 4c Chaładaj W, Corbet M, Fürstner A. Angew. Chem. Int. Ed. 2012; 51: 6929
- 4d Bengtsson C, Almqvist F. J. Org. Chem. 2011; 76: 9187
- 4e Mochida S, Hirano K, Satoh T, Miura M. J. Org. Chem. 2009; 74: 6295
- 4f Luo T, Schreiber SL. Angew. Chem. Int. Ed. 2007; 46: 8250
- 4g Fukuyama T, Higashibeppu Y, Yamaura R, Ryu I. Org. Lett. 2007; 9: 587
- 4h Wang Y, Burton DJ. J. Org. Chem. 2006; 71: 3859
- 4i Komiyama T, Takaguchi Y, Gubaidullin AT, Mamedov VA, Litvinov IA, Tsuboi S. Tetrahedron 2005; 61: 2541
- 4j Louie J, Gibby JE, Farnworth MV, Tekavec TN. J. Am. Chem. Soc. 2002; 124: 15188
- 4k Thibonnet J, Abarbri M, Parrain JL, Duchêne A. J. Org. Chem. 2002; 67: 394
- 4l Liu R, Li X, Li X, Wang J, Yang Y. J. Org. Chem. 2019; 84: 14141
- 4m Preindl J, Schulthoff S, Wirtz C, Lingnau J, Fürstner A. Angew. Chem. Int. Ed. 2017; 56: 7525
- 4n Preindl J, Jouvin K, Laurich D, Seidel G, Fürstner A. Chem. Eur. J. 2016; 22: 237
- 4o Manikandan R, Jeganmohan M. Org. Lett. 2014; 16: 652
- 4p Anastasia LXu C.. Negishi E.-i. Tetrahedron Lett. 2002; 43: 5673
- 4q Bellina F, Biagetti M, Carpita A, Rossi R. Tetrahedron Lett. 2001; 42: 2859
- 5a Liu J, Liu R, Wei Y, Shi M. Trends Chem. 2019; 1: 779
- 5b De N, Yoo EJ. ACS Catal. 2018; 8: 48
- 5c Special Issue: Chemistry of Donor-Acceptor Cyclopropanes and Cyclobutanes: Reissig H.-U, Werz DB. Isr. J. Chem. 2016; 56: 365-577
- 5d Grover HK, Emmett MR, Kerr MA. Org. Biomol. Chem. 2015; 13: 655
- 5e Novikov RA, Tomilov YV. Mendeleev Commun. 2015; 25: 1
- 5f Schneider TF, Kaschel J, Werz DB. Angew. Chem. Int. Ed. 2014; 53: 5504
- 5g Cavitt MA, Phun KH, France S. Chem. Soc. Rev. 2014; 43: 804
- 5h De Nanteuil F, De Simone F, Frei R, Benfatti F, Serrano E, Waser J. Chem. Commun. 2014; 50: 10912
- 5i Reissig HU, Zimmer R. Chem. Rev. 2003; 103: 1151
- 5j Werz DB, Biju AT. Angew. Chem. Int. Ed. 2020; 59: 3385
- 5k Xia Y, Liu X, Feng X. Angew. Chem. Int. Ed. 2020; 60: 9192
- 5l Pirenne V, Muriel B, Waser J. Chem. Rev. 2021; 121: 227
- 5m Augustin AU, Werz DB. Acc. Chem. Res. 2021; 54: 1528
- 6 Shao J, Luo Q, Bi H, Wang SR. Org. Lett. 2021; 23: 459
- 7a Li G.-Q, Dai L.-X, You S.-L. Org. Lett. 2009; 11: 1623
- 7b Sathishkannan G, Srinivasan K. Adv. Synth. Catal. 2014; 356: 729
- 7c Zhu Y, Gong Y. J. Org. Chem. 2015; 80: 490
- 8a Yin D, Liu H, Lu C.-D, Xu Y.-J. J. Org. Chem. 2017; 82: 3252
- 8b Fauduet H, Burgada R. Synthesis 1980; 642
- 8c Romanova IP, Bogdanov AV, Mironov VF, Shaikhutdinova GR, Larionova OA, Latypov SK, Bal-andina AA, Yakh-varov DG, Gubaidullin AT, Saifina AF, Sinyashin OG. J. Org. Chem. 2011; 76: 2548
- 8d Zhang J, Hao J, Huang Z, Han J, He Z. Chem. Commun. 2020; 56: 10251
- 9a Venkatesh C, Singh PP, Ila H, Junjappa H. Eur. J. Org. Chem. 2006; 5378
- 9b Nguyen TN, Nguyen TS, May JA. Org. Lett. 2016; 18: 3786
- 10a Węcławski MK, Tasior M, Hammann T, Cywiński PJ, Gryko DT. Chem. Commun. 2014; 50: 9105
- 10b Węcławski MK, Deperasińska I, Banasiewicz M, Young DC, Leniak A, Gryko DT. Chem. Asian J. 2019; 14: 1763
- 10c Xue W, Wang D, Li C, Zhai Z, Wang T, Liang Y, Zhang Z. J. Org. Chem. 2020; 85: 3689
- 11a Campeau L.-C, Parisien M, Leblanc M, Fagnou K. J. Am. Chem. Soc. 2004; 126: 9186
- 11b Campeau L.-C, Parisien M, Jean A, Fagnou K. J. Am. Chem. Soc. 2006; 128: 581
- 12a Zhang J, Li S, Qiao Y, Peng C, Wang X.-N, Chang J. Chem. Commun. 2018; 54: 12455
- 12b Hsiao H.-C, Annamalai P, Jayakumar J, Sun S.-Y, Chuang S.-C. Adv. Synth. Catal. 2021; 363: 1695
- 13 Armstrong A, Baxter CA, Lamont SG, Pape AR, Wincewicz R. Org. Lett. 2007; 9: 351
- 14a Minatti A, Zheng X, Buchwald SL. J. Org. Chem. 2007; 72: 9253
- 14b Komatsuki K, Kozuma A, Saito K, Yamada T. Org. Lett. 2019; 21: 6628
- 15 Tan P, Wang H, Wang SR. Org. Lett. 2021; 23: 2590
-
16 CCDC 2083287 (8n) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.
For selective recent examples:
For selective recent examples: