Subscribe to RSS
DOI: 10.1055/a-1869-7607
Early Diagnosis and Prevention of Infections in Cirrhosis
Funding None.
Abstract
Strategies to prevent infection and improve outcomes in patients with cirrhosis. HAV, hepatitis A virus; HBV, hepatitis B virus; COVID-19, novel coronavirus disease 2019; NSBB, nonselective β-blocker; PPI, proton pump inhibitors.
Cirrhosis is a risk factor for infections. Majority of hospital admissions in patients with cirrhosis are due to infections. Sepsis is an immunological response to an infectious process that leads to end-organ dysfunction and death. Preventing infections may avoid the downstream complications, and early diagnosis of infections may improve the outcomes. In this review, we discuss the pathogenesis, diagnosis, and biomarkers of infection; the incremental preventive strategies for infections and sepsi; and the consequent organ failures in cirrhosis. Strategies for primary prevention include reducing gut translocation by selective intestinal decontamination, avoiding unnecessary proton pump inhibitors' use, appropriate use of β-blockers, and vaccinations for viral diseases including novel coronavirus disease 2019. Secondary prevention includes early diagnosis and a timely and judicious use of antibiotics to prevent organ dysfunction. Organ failure support constitutes tertiary intervention in cirrhosis. In conclusion, infections in cirrhosis are potentially preventable with appropriate care strategies to then enable improved outcomes.
Lay Summary
Infections in patients with cirrhosis significantly contribute to morbidity and mortality. Infections in cirrhosis frequently lead to organ failures. Therefore, preventing infections may improve the outcomes of patients with cirrhosis by preventing downstream complications. In this article, we discussed several measures, including antibiotic and nonantibiotic-based interventions, to prevent infections in cirrhosis and improve outcomes.
Abbreviations
ACLF, acute-on-chronic liver failure; AKI, acute kidney injury; ARG, antibiotic resistance gene; BI, bacterial infection; BT, bacterial translocation; CLIF-SOFA, chronic liver failure-sequential organ failure assessment; CLP, cecal ligation and puncture; COVID-19, novel coronavirus disease 2019; CRP, C-reactive protein; FA, fatty acid; FMT, fecal microbiota transplantation; G-CSF, granulocyte-colony stimulating factor; GNB, gram-negative bacilli; GPC, gram-positive cocci; HAS, human albumin solution; HO-1, heme oxygenase-1; ICU, intensive care unit; IFN, interferon; iNOS, endotoxin-induced nitric oxide synthase; LPS, lipopolysaccharide; LTB4, leukotriene B4; MDRO, multi-drug resistant organism; MR-proADM, mid-regional pro-adrenomedullin; NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis; NLR, neutrophil-to-lymphocyte ratio; NSBB, Nonselective β-blocker; PCT, procalcitonin; PG, prostaglandin; PGE2, prostaglandin E2; PPI, proton pump inhibitor; qSOFA, quick sequential organ failure assessment; recAP, recombinant alkaline phosphatase; SBP, spontaneous bacterial peritonitis; SID, selective intestinal decontamination; SIRS, systemic inflammatory response syndrome; SOFA, sequential organ failure assessment; SSTI, skin and soft tissue infection; UTI, urinary tract infection; TLR, toll-like receptor; TNF, tumor necrosis factor; TREM-1, triggering receptor expressed on myeloid cells-1; WCC, white cell count.
Authors' Contributions
K.R.R. and N.R.P. developed the study concept; A.V.K., K.K., and M.P. wrote the initial draft; A.V.K. and M.P. prepared the figures; J.P.A., M.S., and K.K. prepared the tables; J.P.A., D.N.R., N.R.P., and K.R.R. critically assessed the draft. K.R.R. and A.V.K. are the guarantors of the article. All members approved the final manuscript.
Publication History
Accepted Manuscript online:
07 June 2022
Article published online:
10 August 2022
© 2022. Thieme. All rights reserved.
Thieme Medical Publishers, Inc.
333 Seventh Avenue, 18th Floor, New York, NY 10001, USA
-
References
- 1 Foreman MG, Mannino DM, Moss M. Cirrhosis as a risk factor for sepsis and death: analysis of the National Hospital Discharge Survey. Chest 2003; 124 (03) 1016-1020
- 2 Navasa M, Fernández J, Rodés J. Bacterial infections in liver cirrhosis. Ital J Gastroenterol Hepatol 1999; 31 (07) 616-625
- 3 Levesque E, Saliba F, Ichaï P, Samuel D. Outcome of patients with cirrhosis requiring mechanical ventilation in ICU. J Hepatol 2014; 60 (03) 570-578
- 4 Piano S, Singh V, Caraceni P. et al; International Club of Ascites Global Study Group. Epidemiology and effects of bacterial infections in patients with cirrhosis worldwide. Gastroenterology 2019; 156 (05) 1368-1380 .e10
- 5 Singer M, Deutschman CS, Seymour CW. et al. The third international consensus definitions for sepsis and septic shock (SEPSIS-3). JAMA 2016; 315 (08) 801-810
- 6 Hensley MK, Deng JC. Acute on chronic liver failure and immune dysfunction: a mimic of sepsis. Semin Respir Crit Care Med 2018; 39 (05) 588-597
- 7 Arabi YM, Dara SI, Memish Z. et al; Cooperative Antimicrobial Therapy of Septic Shock (CATSS) Database Research Group. Antimicrobial therapeutic determinants of outcomes from septic shock among patients with cirrhosis. Hepatology 2012; 56 (06) 2305-2315
- 8 Bajaj JS, O'Leary JG, Reddy KR. et al; North American Consortium For The Study Of End-Stage Liver Disease (NACSELD). Survival in infection-related acute-on-chronic liver failure is defined by extrahepatic organ failures. Hepatology 2014; 60 (01) 250-256
- 9 Moreau R, Jalan R, Gines P. et al; CANONIC Study Investigators of the EASL–CLIF Consortium. Acute-on-chronic liver failure is a distinct syndrome that develops in patients with acute decompensation of cirrhosis. Gastroenterology 2013; 144 (07) 1426-1437 , 1437.e1–1437.e9
- 10 Arvaniti V, D'Amico G, Fede G. et al. Infections in patients with cirrhosis increase mortality four-fold and should be used in determining prognosis. Gastroenterology 2010; 139 (04) 1246-1256 , 1256.e1–1256.e5
- 11 Garcia-Tsao G. Prophylactic antibiotics in cirrhosis: are they promoting or preventing infections?. Clin Liver Dis (Hoboken) 2019; 14 (03) 98-102
- 12 Bonnel AR, Bunchorntavakul C, Reddy KR. Immune dysfunction and infections in patients with cirrhosis. Clin Gastroenterol Hepatol 2011; 9 (09) 727-738
- 13 Borzio M, Salerno F, Piantoni L. et al. Bacterial infection in patients with advanced cirrhosis: a multicentre prospective study. Dig Liver Dis 2001; 33 (01) 41-48
- 14 Fernández J, Prado V, Trebicka J. et al; European Foundation for the Study of Chronic Liver Failure (EF-Clif). Multidrug-resistant bacterial infections in patients with decompensated cirrhosis and with acute-on-chronic liver failure in Europe. J Hepatol 2019; 70 (03) 398-411
- 15 Bajaj JS, O'Leary JG, Reddy KR. et al; NACSELD. Second infections independently increase mortality in hospitalized patients with cirrhosis: the North American consortium for the study of end-stage liver disease (NACSELD) experience. Hepatology 2012; 56 (06) 2328-2335
- 16 Fernández J, Navasa M, Gómez J. et al. Bacterial infections in cirrhosis: epidemiological changes with invasive procedures and norfloxacin prophylaxis. Hepatology 2002; 35 (01) 140-148
- 17 Bajaj JS, Heuman DM, Hylemon PB. et al. Altered profile of human gut microbiome is associated with cirrhosis and its complications. J Hepatol 2014; 60 (05) 940-947
- 18 Bert F, Panhard X, Johnson J. et al. Genetic background of Escherichia coli isolates from patients with spontaneous bacterial peritonitis: relationship with host factors and prognosis. Clin Microbiol Infect 2008; 14 (11) 1034-1040
- 19 Terra C, Guevara M, Torre A. et al. Renal failure in patients with cirrhosis and sepsis unrelated to spontaneous bacterial peritonitis: value of MELD score. Gastroenterology 2005; 129 (06) 1944-1953
- 20 Premkumar M, Devurgowda D, Dudha S. et al. A/H1N1/09 influenza is associated with high mortality in liver cirrhosis. J Clin Exp Hepatol 2019; 9 (02) 162-170
- 21 Premkumar M, Sarin SK. Current concepts in coagulation profile in cirrhosis and acute-on-chronic liver failure. Clin Liver Dis (Hoboken) 2020; 16 (04) 158-167
- 22 Kulkarni AV, Kumar P, Sharma M. et al. Pathophysiology and prevention of paracentesis-induced circulatory dysfunction: a concise review. J Clin Transl Hepatol 2020; 8 (01) 42-48
- 23 Wagener G, Kovalevskaya G, Minhaz M, Mattis F, Emond JC, Landry DW. Vasopressin deficiency and vasodilatory state in end-stage liver disease. J Cardiothorac Vasc Anesth 2011; 25 (04) 665-670
- 24 Prin M, Bakker J, Wagener G. Hepatosplanchnic circulation in cirrhosis and sepsis. World J Gastroenterol 2015; 21 (09) 2582-2592
- 25 Kim G, Huh JH, Lee KJ, Kim MY, Shim KY, Baik SK. Relative adrenal insufficiency in patients with cirrhosis: a systematic review and meta-analysis. Dig Dis Sci 2017; 62 (04) 1067-1079
- 26 Gustot T, Durand F, Lebrec D, Vincent JL, Moreau R. Severe sepsis in cirrhosis. Hepatology 2009; 50 (06) 2022-2033
- 27 Romero-Gómez M, Montagnese S, Jalan R. Hepatic encephalopathy in patients with acute decompensation of cirrhosis and acute-on-chronic liver failure. J Hepatol 2015; 62 (02) 437-447
- 28 Recknagel P, Gonnert FA, Westermann M. et al. Liver dysfunction and phosphatidylinositol-3-kinase signalling in early sepsis: experimental studies in rodent models of peritonitis. PLoS Med 2012; 9 (11) e1001338
- 29 Yan J, Li S, Li S. The role of the liver in sepsis. Int Rev Immunol 2014; 33 (06) 498-510
- 30 Tripathi DM, Vilaseca M, Lafoz E. et al. Simvastatin prevents progression of acute on chronic liver failure in rats with cirrhosis and portal hypertension. Gastroenterology 2018; 155 (05) 1564-1577
- 31 Simonetto DA, Piccolo Serafim L, Gallo de Moraes A, Gajic O, Kamath PS. Management of sepsis in patients with cirrhosis: current evidence and practical approach. Hepatology 2019; 70 (01) 418-428
- 32 Levy MM, Fink MP, Marshall JC. et al; SCCM/ESICM/ACCP/ATS/SIS. 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Crit Care Med 2003; 31 (04) 1250-1256
- 33 Thabut D, Massard J, Gangloff A. et al. Model for end-stage liver disease score and systemic inflammatory response are major prognostic factors in patients with cirrhosis and acute functional renal failure. Hepatology 2007; 46 (06) 1872-1882
- 34 Borgonovo A, Baldin C, Maggi DC. et al. Systemic inflammatory response syndrome in patients hospitalized for acute decompensation of cirrhosis. Can J Gastroenterol Hepatol 2021; 2021: 5581587
- 35 Piano S, Bartoletti M, Tonon M. et al. Assessment of Sepsis-3 criteria and quick SOFA in patients with cirrhosis and bacterial infections. Gut 2018; 67 (10) 1892-1899
- 36 Augustinho FC, Zocche TL, Borgonovo A. et al. Applicability of Sepsis-3 criteria and quick Sequential Organ Failure Assessment in patients with cirrhosis hospitalised for bacterial infections. Liver Int 2019; 39 (02) 307-315
- 37 Lan P, Wang SJ, Shi QC. et al. Comparison of the predictive value of scoring systems on the prognosis of cirrhotic patients with suspected infection. Medicine (Baltimore) 2018; 97 (28) e11421
- 38 Kulkarni AV, Tirumalle S, Premkumar M. et al. Primary norfloxacin prophylaxis for APASL-defined acute-on-chronic liver failure: a placebo-controlled double-blind randomized trial. Am J Gastroenterol 2022; 117 (04) 607-616
- 39 Philips CA, Ahamed R, Rajesh S, George T, Mohanan M, Augustine P. Update on diagnosis and management of sepsis in cirrhosis: current advances. World J Hepatol 2020; 12 (08) 451-474
- 40 Lin S, Huang Z, Wang M. et al. Interleukin-6 as an early diagnostic marker for bacterial sepsis in patients with liver cirrhosis. J Crit Care 2015; 30 (04) 732-738
- 41 Bernsmeier C, Cavazza A, Fatourou EM. et al. Leucocyte ratios are biomarkers of mortality in patients with acute decompensation of cirrhosis and acute-on-chronic liver failure. Aliment Pharmacol Ther 2020; 52 (05) 855-865
- 42 Kwon JH, Jang JW, Kim YW. et al. The usefulness of C-reactive protein and neutrophil-to-lymphocyte ratio for predicting the outcome in hospitalized patients with liver cirrhosis. BMC Gastroenterol 2015; 15: 146
- 43 Jalan R, Fernandez J, Wiest R. et al. Bacterial infections in cirrhosis: a position statement based on the EASL Special Conference 2013. J Hepatol 2014; 60 (06) 1310-1324
- 44 Trieb M, Rainer F, Stadlbauer V. et al. HDL-related biomarkers are robust predictors of survival in patients with chronic liver failure. J Hepatol 2020; 73 (01) 113-120
- 45 Kulkarni AV, Anand L, Vyas AK. et al. Omega-3 fatty acid lipid emulsions are safe and effective in reducing endotoxemia and sepsis in acute-on-chronic liver failure: An open-label randomized controlled trial. J Gastroenterol Hepatol 2021; 36 (07) 1953-1961
- 46 Wen X, Tong J, Yao M, Hu J, Lu F. Prognostic value of HDL-related biomarkers in patients with HBV-related ACLF. J Hepatol 2021; 75 (01) 243-245
- 47 Stauber RE, Scharnagl H, Marsche G. Reply to: “Prognostic value of HDL-related biomarkers in patients with HBV-related ACLF”. J Hepatol 2021; 75 (01) 245-246
- 48 Morin EE, Guo L, Schwendeman A, Li XA. HDL in sepsis - risk factor and therapeutic approach. Front Pharmacol 2015; 6: 244
- 49 Fischer P, Grigoras C, Bugariu A. et al. Are presepsin and resistin better markers for bacterial infection in patients with decompensated liver cirrhosis?. Dig Liver Dis 2019; 51 (12) 1685-1691
- 50 Yagmur E, Trautwein C, Gressner AM, Tacke F. Resistin serum levels are associated with insulin resistance, disease severity, clinical complications, and prognosis in patients with chronic liver diseases. Am J Gastroenterol 2006; 101 (06) 1244-1252
- 51 Tornai D, Vitalis Z, Jonas A. et al. Increased sTREM-1 levels identify cirrhotic patients with bacterial infection and predict their 90-day mortality. Clin Res Hepatol Gastroenterol 2021; 45 (05) 101579
- 52 Tornai T, Vitalis Z, Sipeki N. et al. Macrophage activation marker, soluble CD163, is an independent predictor of short-term mortality in patients with cirrhosis and bacterial infection. Liver Int 2016; 36 (11) 1628-1638
- 53 Reuken PA, Kiehntopf M, Stallmach A, Bruns T. Mid-regional pro-adrenomedullin (MR-proADM): an even better prognostic biomarker than C-reactive protein to predict short-term survival in patients with decompensated cirrhosis at risk of infection?. J Hepatol 2012; 57 (05) 1156-1158 , author reply 1158–1159
- 54 Kaur S, Hussain S, Kolhe K. et al. Elevated plasma ICAM1 levels predict 28-day mortality in cirrhotic patients with COVID-19 or bacterial sepsis. JHEP Rep 2021; 3 (04) 100303
- 55 Tsiakalos A, Karatzaferis A, Ziakas P, Hatzis G. Acute-phase proteins as indicators of bacterial infection in patients with cirrhosis. Liver Int 2009; 29 (10) 1538-1542
- 56 Lazzarotto C, Ronsoni MF, Fayad L. et al. Acute phase proteins for the diagnosis of bacterial infection and prediction of mortality in acute complications of cirrhosis. Ann Hepatol 2013; 12 (04) 599-607
- 57 Yuan LY, Ke ZQ, Wang M, Li Y. Procalcitonin and C-reactive protein in the diagnosis and prediction of spontaneous bacterial peritonitis associated with chronic severe hepatitis B. Ann Lab Med 2013; 33 (06) 449-454
- 58 Lin KH, Wang FL, Wu MS. et al. Serum procalcitonin and C-reactive protein levels as markers of bacterial infection in patients with liver cirrhosis: a systematic review and meta-analysis. Diagn Microbiol Infect Dis 2014; 80 (01) 72-78
- 59 Denning NL, Aziz M, Gurien SD, Wang P. DAMPs and NETs in Sepsis. Front Immunol 2019; 10: 2536
- 60 Yoo H, Im Y, Ko RE, Lee JY, Park J, Jeon K. Association of plasma level of high-mobility group box-1 with necroptosis and sepsis outcomes. Sci Rep 2021; 11 (01) 9512
- 61 Pregernig A, Müller M, Held U, Beck-Schimmer B. Prediction of mortality in adult patients with sepsis using six biomarkers: a systematic review and meta-analysis. Ann Intensive Care 2019; 9 (01) 125
- 62 Nikkari S, McLaughlin IJ, Bi W, Dodge DE, Relman DA. Does blood of healthy subjects contain bacterial ribosomal DNA?. J Clin Microbiol 2001; 39 (05) 1956-1959
- 63 Bajpai V, Gupta E, Mitra LG. et al. Spectrum of respiratory viral infections in liver disease patients with cirrhosis admitted in critical care unit. J Lab Physicians 2019; 11 (04) 356-360
- 64 Schütte A, Ciesek S, Wedemeyer H, Lange CM. Influenza virus infection as precipitating event of acute-on-chronic liver failure. J Hepatol 2019; 70 (04) 797-799
- 65 Pati GK, Singh A, Misra B. et al. Acute-on-chronic liver failure (ACLF) in Coastal Eastern India: “a single-center experience”. J Clin Exp Hepatol 2016; 6 (01) 26-32
- 66 Ekpanyapong S, Reddy KR. Infections in cirrhosis. Curr Treat Options Gastroenterol 2019; 17 (02) 254-270
- 67 Kumar P, Sharma M, Sulthana SF, Kulkarni A, Rao PN, Reddy DN. Severe acute respiratory syndrome coronavirus 2-related acute-on-chronic liver failure. J Clin Exp Hepatol 2021; 11 (03) 404-406
- 68 Kulkarni AV, Parthasarathy K, Kumar P. et al. Early liver transplantation after COVID-19 infection: The first report. Am J Transplant 2021; 21 (06) 2279-2284
- 69 Fix OK, Blumberg EA, Chang KM. et al; AASLD COVID-19 Vaccine Working Group. American association for the study of liver diseases expert panel consensus statement: vaccines to prevent coronavirus disease 2019 infection in patients with liver disease. Hepatology 2021; 74 (02) 1049-1064
- 70 Bajaj JS, Kamath PS, Reddy KR. The evolving challenge of infections in cirrhosis. N Engl J Med 2021; 384 (24) 2317-2330
- 71 Leise MD, Talwalkar JA. Immunizations in chronic liver disease: what should be done and what is the evidence. Curr Gastroenterol Rep 2013; 15 (01) 300
- 72 Caraceni P, Riggio O, Angeli P. et al; ANSWER Study Investigators. Long-term albumin administration in decompensated cirrhosis (ANSWER): an open-label randomised trial. Lancet 2018; 391 (10138): 2417-2429
- 73 Mücke MM, Mücke VT, Graf C. et al. Efficacy of norfloxacin prophylaxis to prevent spontaneous bacterial peritonitis: a systematic review and meta-analysis. Clin Transl Gastroenterol 2020; 11 (08) e00223
- 74 Bosch J, Gracia-Sancho J, Abraldes JG. Cirrhosis as new indication for statins. Gut 2020; 69 (05) 953-962
- 75 Tandon P, Ismond KP, Riess K. et al. Exercise in cirrhosis: translating evidence and experience to practice. J Hepatol 2018; 69 (05) 1164-1177
- 76 Abraldes JG, Tarantino I, Turnes J, Garcia-Pagan JC, Rodés J, Bosch J. Hemodynamic response to pharmacological treatment of portal hypertension and long-term prognosis of cirrhosis. Hepatology 2003; 37 (04) 902-908
- 77 Severi C, Tattoli I, Romano G, Corleto VD, Delle Fave G. Beta3-adrenoceptors: relaxant function and mRNA detection in smooth muscle cells isolated from the human colon. Can J Physiol Pharmacol 2004; 82 (07) 515-522
- 78 Reiberger T, Ferlitsch A, Payer BA. et al; Vienna Hepatic Hemodynamic Lab. Non-selective betablocker therapy decreases intestinal permeability and serum levels of LBP and IL-6 in patients with cirrhosis. J Hepatol 2013; 58 (05) 911-921
- 79 Rodrigues SG, Mendoza YP, Bosch J. Beta-blockers in cirrhosis: Evidence-based indications and limitations. JHEP Rep 2019; 2 (01) 100063
- 80 Senzolo M, Cholongitas E, Burra P. et al. beta-Blockers protect against spontaneous bacterial peritonitis in cirrhotic patients: a meta-analysis. Liver Int 2009; 29 (08) 1189-1193
- 81 Kulkarni AV, Rabiee A, Mohanty A. Management of portal hypertension. J Clin Exp Hepatol 2022; (e-pub ahead of print)
- 82 Villanueva C, Albillos A, Genescà J. et al. β blockers to prevent decompensation of cirrhosis in patients with clinically significant portal hypertension (PREDESCI): a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2019; 393 (10181): 1597-1608
- 83 Li DK, Chung RT. Use of proton pump inhibitors in chronic liver diseases. Clin Liver Dis (Hoboken) 2018; 10 (06) 148-151
- 84 De Roza MA, Kai L, Kam JW. et al. Proton pump inhibitor use increases mortality and hepatic decompensation in liver cirrhosis. World J Gastroenterol 2019; 25 (33) 4933-4944
- 85 Janka T, Tornai T, Borbély B. et al. Deleterious effect of proton pump inhibitors on the disease course of cirrhosis. Eur J Gastroenterol Hepatol 2020; 32 (02) 257-264
- 86 Bajaj JS, Ratliff SM, Heuman DM, Lapane KL. Proton pump inhibitors are associated with a high rate of serious infections in veterans with decompensated cirrhosis. Aliment Pharmacol Ther 2012; 36 (09) 866-874
- 87 China L, Maini A, Skene SS. et al. Albumin counteracts immune-suppressive effects of lipid mediators in patients with advanced liver disease. Clin Gastroenterol Hepatol 2018; 16 (05) 738-747 .e7
- 88 Gioannini TL, Zhang D, Teghanemt A, Weiss JP. An essential role for albumin in the interaction of endotoxin with lipopolysaccharide-binding protein and sCD14 and resultant cell activation. J Biol Chem 2002; 277 (49) 47818-47825
- 89 Carvalho JR, Verdelho Machado M. New insights about albumin and liver disease. Ann Hepatol 2018; 17 (04) 547-560
- 90 Oettl K, Birner-Gruenberger R, Spindelboeck W. et al. Oxidative albumin damage in chronic liver failure: relation to albumin binding capacity, liver dysfunction and survival. J Hepatol 2013; 59 (05) 978-983
- 91 Gentilini P, Casini-Raggi V, Di Fiore G. et al. Albumin improves the response to diuretics in patients with cirrhosis and ascites: results of a randomized, controlled trial. J Hepatol 1999; 30 (04) 639-645
- 92 Romanelli RG, La Villa G, Barletta G. et al. Long-term albumin infusion improves survival in patients with cirrhosis and ascites: an unblinded randomized trial. World J Gastroenterol 2006; 12 (09) 1403-1407
- 93 Solà E, Solé C, Simón-Talero M. et al. Midodrine and albumin for prevention of complications in patients with cirrhosis awaiting liver transplantation. A randomized placebo-controlled trial. J Hepatol 2018; 69 (06) 1250-1259
- 94 Di Pascoli M, Fasolato S, Piano S, Bolognesi M, Angeli P. Long-term administration of human albumin improves survival in patients with cirrhosis and refractory ascites. Liver Int 2019; 39 (01) 98-105
- 95 Sharma P, Puri P, Bansal N. et al. Midodrine and albumin versus albumin alone for the secondary prophylaxis of acute kidney injury in a patient with cirrhosis and ascites. Eur J Gastroenterol Hepatol 2021; 33 (1S, suppl 1): e499-e504
- 96 Fernández J, Clària J, Amorós A. et al. Effects of albumin treatment on systemic and portal hemodynamics and systemic inflammation in patients with decompensated cirrhosis. Gastroenterology 2019; 157 (01) 149-162
- 97 Giannelli V, Di Gregorio V, Iebba V. et al. Microbiota and the gut-liver axis: bacterial translocation, inflammation and infection in cirrhosis. World J Gastroenterol 2014; 20 (45) 16795-16810
- 98 Wiest R, Das S, Cadelina G, Garcia-Tsao G, Milstien S, Groszmann RJ. Bacterial translocation in cirrhotic rats stimulates eNOS-derived NO production and impairs mesenteric vascular contractility. J Clin Invest 1999; 104 (09) 1223-1233
- 99 Ginés P, Rimola A, Planas R. et al. Norfloxacin prevents spontaneous bacterial peritonitis recurrence in cirrhosis: results of a double-blind, placebo-controlled trial. Hepatology 1990; 12 (4, pt. 1): 716-724
- 100 Rimola A, García-Tsao G, Navasa M. et al. Diagnosis, treatment and prophylaxis of spontaneous bacterial peritonitis: a consensus document. International Ascites Club. J Hepatol 2000; 32 (01) 142-153
- 101 Grangé JD, Roulot D, Pelletier G. et al. Norfloxacin primary prophylaxis of bacterial infections in cirrhotic patients with ascites: a double-blind randomized trial. J Hepatol 1998; 29 (03) 430-436
- 102 Moreau R, Elkrief L, Bureau C. et al; NORFLOCIR Trial Investigators. Effects of long-term norfloxacin therapy in patients with advanced cirrhosis. Gastroenterology 2018; 155 (06) 1816-1827 .e9
- 103 Caraceni P, Abraldes JG, Ginès P, Newsome PN, Sarin SK. The search for disease-modifying agents in decompensated cirrhosis: from drug repurposing to drug discovery. J Hepatol 2021; 75 (Suppl. 01) S118-S134
- 104 Tazi KA, Moreau R, Hervé P. et al. Norfloxacin reduces aortic NO synthases and proinflammatory cytokine up-regulation in cirrhotic rats: role of Akt signaling. Gastroenterology 2005; 129 (01) 303-314
- 105 Girleanu I, Trifan A, Huiban L. et al. The risk of Clostridioides difficile infection in cirrhotic patients receiving norfloxacin for secondary prophylaxis of spontaneous bacterial peritonitis-a real life cohort. Medicina (Kaunas) 2021; 57 (09) 57
- 106 Fernández J, Acevedo J, Castro M. et al. Prevalence and risk factors of infections by multiresistant bacteria in cirrhosis: a prospective study. Hepatology 2012; 55 (05) 1551-1561
- 107 Salerno F, Borzio M, Pedicino C. et al; AISF Investigators. The impact of infection by multidrug-resistant agents in patients with cirrhosis. A multicenter prospective study. Liver Int 2017; 37 (01) 71-79
- 108 Lontos S, Shelton E, Angus PW. et al. A randomized controlled study of trimethoprim-sulfamethoxazole versus norfloxacin for the prevention of infection in cirrhotic patients. J Dig Dis 2014; 15 (05) 260-267
- 109 Terg R, Fassio E, Guevara M. et al. Ciprofloxacin in primary prophylaxis of spontaneous bacterial peritonitis: a randomized, placebo-controlled study. J Hepatol 2008; 48 (05) 774-779
- 110 Yim HJ, Suh SJ, Jung YK. et al. Daily norfloxacin vs. weekly ciprofloxacin to prevent spontaneous bacterial peritonitis: a randomized controlled trial. Am J Gastroenterol 2018; 113 (08) 1167-1176
- 111 Montagnese S, Russo FP, Amodio P. et al. Hepatic encephalopathy 2018: A clinical practice guideline by the Italian Association for the Study of the Liver (AISF). Dig Liver Dis 2019; 51 (02) 190-205
- 112 Hanouneh MA, Hanouneh IA, Hashash JG. et al. The role of rifaximin in the primary prophylaxis of spontaneous bacterial peritonitis in patients with liver cirrhosis. J Clin Gastroenterol 2012; 46 (08) 709-715
- 113 Elfert A, Abo Ali L, Soliman S, Ibrahim S, Abd-Elsalam S. Randomized-controlled trial of rifaximin versus norfloxacin for secondary prophylaxis of spontaneous bacterial peritonitis. Eur J Gastroenterol Hepatol 2016; 28 (12) 1450-1454
- 114 Kamal F, Khan MA, Khan Z. et al. Rifaximin for the prevention of spontaneous bacterial peritonitis and hepatorenal syndrome in cirrhosis: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol 2017; 29 (10) 1109-1117
- 115 European Association for the Study of the Liver. Electronic address: easloffice@easloffice.eu; European Association for the Study of the Liver. EASL Clinical Practice Guidelines for the management of patients with decompensated cirrhosis. J Hepatol 2018; 69 (02) 406-460
- 116 Istvan ES, Deisenhofer J. Structural mechanism for statin inhibition of HMG-CoA reductase. Science 2001; 292 (5519): 1160-1164
- 117 Lee TS, Chang CC, Zhu Y, Shyy JY. Simvastatin induces heme oxygenase-1: a novel mechanism of vessel protection. Circulation 2004; 110 (10) 1296-1302
- 118 Pleiner J, Schaller G, Mittermayer F. et al. Simvastatin prevents vascular hyporeactivity during inflammation. Circulation 2004; 110 (21) 3349-3354
- 119 La Mura V, Pasarín M, Meireles CZ. et al. Effects of simvastatin administration on rodents with lipopolysaccharide-induced liver microvascular dysfunction. Hepatology 2013; 57 (03) 1172-1181
- 120 Novack V, Terblanche M, Almog Y. Do statins have a role in preventing or treating sepsis?. Crit Care 2006; 10 (01) 113
- 121 Stolf AM, Lívero FdosR, Dreifuss AA. et al. Effects of statins on liver cell function and inflammation in septic rats. J Surg Res 2012; 178 (02) 888-897
- 122 Tleyjeh IM, Kashour T, Hakim FA. et al. Statins for the prevention and treatment of infections: a systematic review and meta-analysis. Arch Intern Med 2009; 169 (18) 1658-1667
- 123 Parihar SP, Guler R, Brombacher F. Statins: a viable candidate for host-directed therapy against infectious diseases. Nat Rev Immunol 2019; 19 (02) 104-117
- 124 Motzkus-Feagans C, Pakyz AL, Ratliff SM, Bajaj JS, Lapane KL. Statin use and infections in Veterans with cirrhosis. Aliment Pharmacol Ther 2013; 38 (06) 611-618
- 125 Abraldes JG, Villanueva C, Aracil C. et al; BLEPS Study Group. Addition of simvastatin to standard therapy for the prevention of variceal rebleeding does not reduce rebleeding but increases survival in patients with cirrhosis. Gastroenterology 2016; 150 (05) 1160-1170 .e3
- 126 Mohanty A, Tate JP, Garcia-Tsao G. Statins are associated with a decreased risk of decompensation and death in veterans with hepatitis C-related compensated cirrhosis. Gastroenterology 2016; 150 (02) 430-40 .e1
- 127 Bishnu S, Ahammed SM, Sarkar A. et al. Effects of atorvastatin on portal hemodynamics and clinical outcomes in patients with cirrhosis with portal hypertension: a proof-of-concept study. Eur J Gastroenterol Hepatol 2018; 30 (01) 54-59
- 128 Wong JC, Chan HL, Tse YK, Yip TC, Wong VW, Wong GL. Statins reduce the risk of liver decompensation and death in chronic viral hepatitis: a propensity score weighted landmark analysis. Aliment Pharmacol Ther 2017; 46 (10) 1001-1010
- 129 Gaia S, Olivero A, Smedile A. et al. Multiple courses of G-CSF in patients with decompensated cirrhosis: consistent mobilization of immature cells expressing hepatocyte markers and exploratory clinical evaluation. Hepatol Int 2013; 7 (04) 1075-1083
- 130 Garg V, Garg H, Khan A. et al. Granulocyte colony-stimulating factor mobilizes CD34(+) cells and improves survival of patients with acute-on-chronic liver failure. Gastroenterology 2012; 142 (03) 505-512 .e1
- 131 Khanam A, Trehanpati N, Garg V. et al. Altered frequencies of dendritic cells and IFN-gamma-secreting T cells with granulocyte colony-stimulating factor (G-CSF) therapy in acute-on- chronic liver failure. Liver Int 2014; 34 (04) 505-513
- 132 Kedarisetty CK, Anand L, Bhardwaj A. et al. Combination of granulocyte colony-stimulating factor and erythropoietin improves outcomes of patients with decompensated cirrhosis. Gastroenterology 2015; 148 (07) 1362-70 .e7
- 133 Anand L, Bihari C, Kedarisetty CK. et al. Early cirrhosis and a preserved bone marrow niche favour regenerative response to growth factors in decompensated cirrhosis. Liver Int 2019; 39 (01) 115-126
- 134 Verma N, Kaur A, Sharma R. et al. Outcomes after multiple courses of granulocyte colony-stimulating factor and growth hormone in decompensated cirrhosis: A randomized trial. Hepatology 2018; 68 (04) 1559-1573
- 135 Prajapati R, Arora A, Sharma P, Bansal N, Singla V, Kumar A. Granulocyte colony-stimulating factor improves survival of patients with decompensated cirrhosis: a randomized-controlled trial. Eur J Gastroenterol Hepatol 2017; 29 (04) 448-455
- 136 Philips CA, Augustine P, Rajesh S. et al. Granulocyte colony-stimulating factor use in decompensated cirrhosis: lack of survival benefit. J Clin Exp Hepatol 2020; 10 (02) 124-134
- 137 Newsome PN, Fox R, King AL. et al. Granulocyte colony-stimulating factor and autologous CD133-positive stem-cell therapy in liver cirrhosis (REALISTIC): an open-label, randomised, controlled phase 2 trial. Lancet Gastroenterol Hepatol 2018; 3 (01) 25-36
- 138 Sharma M, Kulkarni A, Sasikala M. et al. Long-term outcome of autologous hematopoietic stem cell infusion in cirrhosis: waning effect over time. J Clin Transl Hepatol 2020; 8 (04) 385-390
- 139 Ferrer R, Martin-Loeches I, Phillips G. et al. Empiric antibiotic treatment reduces mortality in severe sepsis and septic shock from the first hour: results from a guideline-based performance improvement program. Crit Care Med 2014; 42 (08) 1749-1755
- 140 Merli M, Lucidi C, Di Gregorio V. et al. An empirical broad spectrum antibiotic therapy in health-care-associated infections improves survival in patients with cirrhosis: a randomized trial. Hepatology 2016; 63 (05) 1632-1639
- 141 Wong F, Piano S, Singh V. et al; International Club of Ascites Global Study Group. Clinical features and evolution of bacterial infection-related acute-on-chronic liver failure. J Hepatol 2021; 74 (02) 330-339
- 142 Fernández J, Acevedo J, Wiest R. et al; European Foundation for the Study of Chronic Liver Failure. Bacterial and fungal infections in acute-on-chronic liver failure: prevalence, characteristics and impact on prognosis. Gut 2018; 67 (10) 1870-1880
- 143 Mücke MM, Rumyantseva T, Mücke VT. et al. Bacterial infection-triggered acute-on-chronic liver failure is associated with increased mortality. Liver Int 2018; 38 (04) 645-653
- 144 Fernández J, Tandon P, Mensa J, Garcia-Tsao G. Antibiotic prophylaxis in cirrhosis: good and bad. Hepatology 2016; 63 (06) 2019-2031
- 145 China L, Freemantle N, Forrest E. et al; ATTIRE Trial Investigators. A randomized trial of albumin infusions in hospitalized patients with cirrhosis. N Engl J Med 2021; 384 (09) 808-817
- 146 Fernández J, Angeli P, Trebicka J. et al. Efficacy of albumin treatment for patients with cirrhosis and infections unrelated to spontaneous bacterial peritonitis. Clin Gastroenterol Hepatol 2020; 18 (04) 963-973 .e14
- 147 Mahmud N, Chapin S, Goldberg DS, Reddy KR, Taddei TH, Kaplan DE. Statin exposure is associated with reduced development of acute-on-chronic liver failure in a Veterans Affairs cohort. J Hepatol 2022; 76 (05) 1100-1108
- 148 Plauth M, Bernal W, Dasarathy S. et al. ESPEN guideline on clinical nutrition in liver disease. Clin Nutr 2019; 38 (02) 485-521
- 149 Schaible UE, Kaufmann SH. Malnutrition and infection: complex mechanisms and global impacts. PLoS Med 2007; 4 (05) e115
- 150 Lucidi C, Lattanzi B, Di Gregorio V. et al. A low muscle mass increases mortality in compensated cirrhotic patients with sepsis. Liver Int 2018; 38 (05) 851-857
- 151 Ebadi M, Montano-Loza AJ. Insights on clinical relevance of sarcopenia in patients with cirrhosis and sepsis. Liver Int 2018; 38 (05) 786-788
- 152 Kim HY, Jang JW. Sarcopenia in the prognosis of cirrhosis: going beyond the MELD score. World J Gastroenterol 2015; 21 (25) 7637-7647
- 153 Bischoff SC, Bernal W, Dasarathy S. et al. ESPEN practical guideline: clinical nutrition in liver disease. Clin Nutr 2020; 39 (12) 3533-3562
- 154 Fernández J, Piano S, Bartoletti M, Wey EQ. Management of bacterial and fungal infections in cirrhosis: The MDRO challenge. J Hepatol 2021; 75 (Suppl. 01) S101-S117
- 155 Piano S, Tonon M, Angeli P. Changes in the epidemiology and management of bacterial infections in cirrhosis. Clin Mol Hepatol 2021; 27 (03) 437-445
- 156 van Schaik W. The human gut resistome. Philos Trans R Soc Lond B Biol Sci 2015; 370 (1670): 20140087
- 157 Werner G, Coque TM, Franz CM. et al. Antibiotic resistant enterococci-tales of a drug resistance gene trafficker. Int J Med Microbiol 2013; 303 (6-7): 360-379
- 158 Patel VC, Williams R. Antimicrobial resistance in chronic liver disease. Hepatol Int 2020; 14 (01) 24-34
- 159 Alcock BP, Raphenya AR, Lau TTY. et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res 2020; 48 (D1): D517-D525
- 160 van Duin D, Paterson DL. Multidrug-resistant bacteria in the community: trends and lessons learned. Infect Dis Clin North Am 2016; 30 (02) 377-390
- 161 Powell EE, Skoien R, Rahman T. et al. Increasing hospitalization rates for cirrhosis: overrepresentation of disadvantaged Australians. EClinicalMedicine 2019; 11: 44-53
- 162 Calder PC. Immunonutrition. BMJ 2003; 327 (7407): 117-118
- 163 Simopoulos AP. Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr 2002; 21 (06) 495-505
- 164 Calder PC. Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology?. Br J Clin Pharmacol 2013; 75 (03) 645-662
- 165 Kang JX, Weylandt KH. Modulation of inflammatory cytokines by omega-3 fatty acids. Subcell Biochem 2008; 49: 133-143
- 166 Shamsaddini A, Gillevet PM, Acharya C. et al. Impact of antibiotic resistance genes in gut microbiome of patients with cirrhosis. Gastroenterology 2021; 161 (02) 508-521 .e7
- 167 Bajaj JS, Shamsaddini A, Fagan A. et al. Fecal microbiota transplant in cirrhosis reduces gut microbial antibiotic resistance genes: analysis of two trials. Hepatol Commun 2020; 5 (02) 258-271
- 168 Duan Y, Llorente C, Lang S. et al. Bacteriophage targeting of gut bacterium attenuates alcoholic liver disease. Nature 2019; 575 (7783): 505-511
- 169 Bakhshinejad B, Sadeghizadeh M. Bacteriophages and their applications in the diagnosis and treatment of hepatitis B virus infection. World J Gastroenterol 2014; 20 (33) 11671-11683
- 170 Górski A, Jończyk-Matysiak E, Łusiak-Szelachowska M, Międzybrodzki R, Weber-Dąbrowska B, Borysowski J. The potential of phage therapy in sepsis. Front Immunol 2017; 8: 1783
- 171 Engelmann C, Adebayo D, Oria M. et al. Recombinant alkaline phosphatase prevents acute on chronic liver failure. Sci Rep 2020; 10 (01) 389
- 172 Kiffer-Moreira T, Sheen CR, Gasque KC. et al. Catalytic signature of a heat-stable, chimeric human alkaline phosphatase with therapeutic potential. PLoS One 2014; 9 (02) e89374
- 173 Matsunaga N, Tsuchimori N, Matsumoto T, Ii M. TAK-242 (resatorvid), a small-molecule inhibitor of Toll-like receptor (TLR) 4 signaling, binds selectively to TLR4 and interferes with interactions between TLR4 and its adaptor molecules. Mol Pharmacol 2011; 79 (01) 34-41
- 174 Macnaughtan J, Albillos A, Kerbert A. et al. A double blind, randomised, placebo-controlled study to assess safety and tolerability of oral enterosorbent yaq-001 in cirrhotic patients. Gut 2021; 70 (Suppl. 03) A5-A6
- 175 Úbeda M, Lario M, Muñoz L. et al. Obeticholic acid reduces bacterial translocation and inhibits intestinal inflammation in cirrhotic rats. J Hepatol 2016; 64 (05) 1049-1057
- 176 O'Brien AJ, Fullerton JN, Massey KA. et al. Immunosuppression in acutely decompensated cirrhosis is mediated by prostaglandin E2. Nat Med 2014; 20 (05) 518-523
- 177 Agarwal B, Saliba F, Tomescu DR. et al. P076 A multi-centre, randomized controlled study, to evaluate the safety and performance of the DIALIVE liver dialysis device in patients with acute on chronic liver failure (ACLF) versus standard of care (SOC)(ALIVER Consortium). Gut 2021; 70 (Suppl. 03) A54
- 178 Cañizares RB, Saliba F, Tomescu D. et al. P077 Pathophysiological basis of resolution of acute-on-chronic liver failure (ACLF) induced by the novel liver dialysis device, DIALIVE (ALIVER consortium). Gut 2021; 70 (Suppl. 03) A55