Subscribe to RSS
DOI: 10.1055/a-1962-7422
Der Stellenwert von Laser-Flare-Messungen zur Verlaufsbeurteilung von Uveitiden
Article in several languages: deutsch | EnglishZusammenfassung
Laser-Flare-Messungen (LFM) ermöglichen die Quantifizierung der Proteinkonzentration in der Kammerwasserflüssigkeit und damit die Beurteilung der Blut-Kammerwasser-Schranke. Solche Messungen sind zuverlässiger als die klinische Beurteilung des Tyndall-Effekts und daher besonders nützlich für die Verlaufsbeurteilung von Uveitispatienten. Bei aktiven Uveitiden korrelieren LFM gut mit dem Vorderkammerzellreiz. In diversen Studien wurde gezeigt, dass hohe LF-Werte mit einem gesteigerten Risiko von uveitischen Sekundärkomplikationen wie z. B. Makulaödem, Glaukom und posterioren Synechien einhergehen. Die LFM ermöglichen auch die Beurteilung des Ansprechens auf antientzündliche Therapien, die Wahl des optimalen Zeitpunkts und der Operationstechnik für intraokulare Operationen.
Schlüsselwörter
Blut-Kammerwasser-Schranke - Komplikationen - Laser-Flare-Messungen (LFM) - Proteinkonzentration - UveitisPublication History
Received: 25 September 2022
Accepted: 14 October 2022
Accepted Manuscript online:
18 October 2022
Article published online:
23 December 2022
© 2022. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References/Literatur
- 1 McNally TW, Liu X, Beese S. et al. Instrument-based tests for quantifying aqueous humour protein levels in uveitis: a systematic review protocol. Syst Rev 2019; 8: 287
- 2 Goel M, Picciani RG, Lee RK. et al. Aqueous humor dynamics: a review. Open Ophthalmol J 2010; 4: 52-59
- 3 Murthy KR, Rajagopalan P, Pinto SM. et al. Proteomics of human aqueous humor. OMICS 2015; 19: 283-293
- 4 Chiou AG, Florakis GJ, Herbort CP. Correlation between anterior chamber IgG/albumin concentrations and laser flare photometry in eyes with endogenous uveitis. Ophthalmologica 1998; 212: 275-277
- 5 Tugal-Tutkun I, Herbort CP. Laser flare photometry: a noninvasive, objective, and quantitative method to measure intraocular inflammation. Int Ophthalmol 2010; 30: 453-464
- 6 Shah SM, Spalton DJ, Taylor JC. Correlations between laser flare measurements and anterior chamber protein concentrations. Invest Ophthalmol Vis Sci 1992; 33: 2878-2884
- 7 Jabs DA, Nussenblatt RB, Rosenbaum JT. et al. Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop. Am J Ophthalmol 2005; 140: 509-516
- 8 Agrawal R, Agarwal A, Jabs DA. et al. Standardization of Nomenclature for Ocular Tuberculosis – Results of Collaborative Ocular Tuberculosis Study (COTS) Workshop. Ocul Immunol Inflamm 2020; 28 (Suppl. 01) S74-S84
- 9 Konstantopoulou K, DelʼOmo R, Morley AM. et al. A comparative study between clinical grading of anterior chamber flare and flare reading using the Kowa laser flare meter. Int Ophthalmol 2015; 35: 629-633
- 10 Kempen JH, Ganesh SK, Sangwan VS. et al. Interobserver agreement in grading activity and site of inflammation in eyes of patients with uveitis. Am J Ophthalmol 2008; 146: 813-818.e1
- 11 Wong IG, Nugent AK, Vargas-Martín F. The effect of biomicroscope illumination system on grading anterior chamber inflammation. Am J Ophthalmol 2009; 148: 516-520.e2
- 12 Saari KM, Guillén-Monterrubío OM, Hartikainen J. et al. Measurement of protein concentration of aqueous humour in vivo: correlation between laser flare measurements and chemical protein determination. Acta Ophthalmol Scand 1997; 75: 63-66
- 13 Liu X, McNally TW, Beese S. et al. Non-invasive Instrument-Based Tests for Quantifying Anterior Chamber Flare in Uveitis: A Systematic Review. Ocul Immunol Inflamm 2021; 29: 982-990
- 14 Ikeji F, Pavesio C, Bunce C. et al. Quantitative assessment of the effects of pupillary dilation on aqueous flare in eyes with chronic anterior uveitis using laser flare photometry. Int Ophthalmol 2010; 30: 491-494
- 15 Ladas JG, Wheeler NC, Morhun PJ. et al. Laser flare-cell photometry: methodology and clinical applications. Surv Ophthalmol 2005; 50: 27-47
- 16 Sawa M, Tsurimaki Y, Tsuru T. et al. New quantitative method to determine protein concentration and cell number in aqueous in vivo. Jpn J Ophthalmol 1988; 32: 132-142
- 17 Shah SM, Spalton DJ, Smith SE. Measurement of aqueous cells and flare in normal eyes. Br J Ophthalmol 1991; 75: 348-352
- 18 Orès R, Terrada C, Errera MH. et al. Laser Flare Photometry: A Useful Tool for Monitoring Patients with Juvenile Idiopathic Arthritis-associated Uveitis. Ocul Immunol Inflamm 2022; 30: 118-128
- 19 Gonzales CA, Ladas JG, Davis JL. et al. Relationships between laser flare photometry values and complications of uveitis. Arch Ophthalmol 2001; 119: 1763-1769
- 20 Tugal-Tutkun I, Cingü K, Kir N. et al. Use of laser flare-cell photometry to quantify intraocular inflammation in patients with Behçet uveitis. Graefes Arch Clin Exp Ophthalmol 2008; 246: 1169-1177
- 21 Yeo TH, Ilangovan S, Keane PA. et al. Discrepancies in assessing anterior chamber activity among uveitis specialists. Jpn J Ophthalmol 2016; 60: 206-211
- 22 Bernasconi O, Papadia M, Herbort CP. Sensitivity of laser flare photometry compared to slit-lamp cell evaluation in monitoring anterior chamber inflammation in uveitis. Int Ophthalmol 2010; 30: 495-500
- 23 Agrawal R, Keane PA, Singh J. et al. Comparative Analysis of Anterior Chamber Flare Grading between Clinicians with Different Levels of Experience and Semi-automated Laser Flare Photometry. Ocul Immunol Inflamm 2016; 24: 184-193
- 24 Tappeiner C, Heinz C, Roesel M. et al. Elevated laser flare values correlate with complicated course of anterior uveitis in patients with juvenile idiopathic arthritis. Acta Ophthalmol 2011; 89: e521-e527
- 25 Siak J, Mahendradas P, Chee SP. Multimodal Imaging in Anterior Uveitis. Ocul Immunol Inflamm 2017; 25: 434-446
- 26 Oshika T, Nishi M, Mochizuki M. et al. Quantitative assessment of aqueous flare and cells in uveitis. Jpn J Ophthalmol 1989; 33: 279-287
- 27 Holland GN. A reconsideration of anterior chamber flare and its clinical relevance for children with chronic anterior uveitis (an American Ophthalmological Society thesis). Trans Am Ophthalmol Soc 2007; 105: 344-364
- 28 Sawa M. [Development of non-invasive clinical examination methods for the anterior segment of the eye and their clinical significance]. Nippon Ganka Gakkai Zasshi 2011; 115: 177-211
- 29 Herbort CP, Guex-Crosier Y, de Ancos E. et al. Use of laser flare photometry to assess and monitor inflammation in uveitis. Ophthalmology 1997; 104: 64-71
- 30 Bouchenaki N, Herbort CP. Fuchsʼ Uveitis: Failure to Associate Vitritis and Disc Hyperfluorescence with the Disease is the Major Factor for Misdiagnosis and Diagnostic Delay. Middle East Afr J Ophthalmol 2009; 16: 239-244
- 31 Nguyen NX, Kuchle M, Naumann GO. Quantification of blood-aqueous barrier breakdown after phacoemulsification in Fuchsʼ heterochromic uveitis. Ophthalmologica 2005; 219: 21-25
- 32 Tugal-Tutkun I, Güney-Tefekli E, Kamaci-Duman F. et al. A cross-sectional and longitudinal study of Fuchs uveitis syndrome in Turkish patients. Am J Ophthalmol 2009; 148: 510-515.e1
- 33 Guex-Crosier Y, Pittet N, Herbort CP. Evaluation of laser flare-cell photometry in the appraisal and management of intraocular inflammation in uveitis. Ophthalmology 1994; 101: 728-735
- 34 Davis JL, Dacanay LM, Holland GN. et al. Laser flare photometry and complications of chronic uveitis in children. Am J Ophthalmol 2003; 135: 763-771
- 35 Tugal-Tutkun I. Behçetʼs Uveitis. Middle East Afr J Ophthalmol 2009; 16: 219-224
- 36 Işık MU, Yalcındag N. Comparison of Spectral Domain Optical Coherence Tomography (SD OCT) Findings with Laser Flare Photometry (LFP) Measurements in Behçetʼs Uveitis. Ocul Immunol Inflamm 2020; 28: 194-199
- 37 Schalnus RW, Ohrloff C. [Comparative laser tyndallometry and fluorophotometry in anterior and posterior uveitis]. Ophthalmologe 1998; 95: 3-7
- 38 Ito Y, Ito M, Ueno S. et al. Changes in intraocular pressure and aqueous flare in eyes with multiple evanescent white dot syndrome. Jpn J Ophthalmol 2020; 64: 378-384
- 39 Fang W, Zhou H, Yang P. et al. Longitudinal quantification of aqueous flare and cells in Vogt-Koyanagi-Harada disease. Br J Ophthalmol 2008; 92: 182-185
- 40 Althaus C, Best J, Hintzmann A. et al. Endothelial precipitates and laser flare photometry in patients with acquired immunodeficiency syndrome: a screening test for cytomegalovirus retinitis. Ger J Ophthalmol 1996; 5: 443-448
- 41 Gonzales CA, Ladas JG, Davis JL. et al. Relationships between laser flare photometry values and complications of uveitis. Arch Ophthal 2001; 119: 1763-1769
- 42 Holland GN, Denove CS, Yu F. Chronic anterior uveitis in children: clinical characteristics and complications. Am J Ophthalmol 2009; 147: 667-678.e5
- 43 Herbort CP, Tugal-Tutkun I. The importance of quantitative measurement methods for uveitis: laser flare photometry endorsed in Europe while neglected in Japan where the technology measuring quantitatively intraocular inflammation was developed. Int Ophthalmol 2017; 37: 469-473
- 44 Tappeiner C, Bae HS, Rothaus K. et al. Occurrence and Risk Factors for Macular Edema in Patients with Juvenile Idiopathic Arthritis-Associated Uveitis. J Clin Med 2021; 10: 4513
- 45 Böhm MR, Tappeiner C, Breitbach MA. et al. Ocular Hypotony in Patients With Juvenile Idiopathic Arthritis-Associated Uveitis. Am J Ophthalmol 2017; 173: 45-55
- 46 Quartier P, Baptiste A, Despert V. et al. ADJUVITE: a double-blind, randomised, placebo-controlled trial of adalimumab in early onset, chronic, juvenile idiopathic arthritis-associated anterior uveitis. Ann Rheum Dis 2018; 77: 1003-1011
- 47 Roesel M, Gutfleisch M, Heinz C. et al. Orbital floor triamcinolone acetonide injections for the management of active non-infectious uveitis. Eye (Lond) 2009; 23: 910-914
- 48 Guex-Crosier Y, Pittet N, Herbort CP. Sensitivity of laser flare photometry to monitor inflammation in uveitis of the posterior segment. Ophthalmology 1995; 102: 613-621
- 49 Laurell CG, Zetterström C, Philipson B. et al. Randomized study of the blood-aqueous barrier reaction after phacoemulsification and extracapsular cataract extraction. Acta Ophthalmol Scand 1998; 76: 573-578
- 50 Dick HB, Schwenn O, Krummenauer F. et al. Inflammation after sclerocorneal versus clear corneal tunnel phacoemulsification. Ophthalmology 2000; 107: 241-247
- 51 Chiou AG, Mermoud A, Jewelewicz DA. Post-operative inflammation following deep sclerectomy with collagen implant versus standard trabeculectomy. Graefes Arch Clin Exp Ophthalmol 1998; 236: 593-596
- 52 Tran VT, Guex-Crosier Y, Herbort CP. Effect of cataract surgery with intraocular lens implantation on inflammation in chronic uveitis: a longitudinal laser flare photometry study. Can J Ophthalmol 1998; 33: 264-269
- 53 Abela-Formanek C, Amon M, Schild G. et al. Inflammation after implantation of hydrophilic acrylic, hydrophobic acrylic, or silicone intraocular lenses in eyes with cataract and uveitis: comparison to a control group. J Cataract Refract Surg 2002; 28: 1153-1159
- 54 Gupta G, Ram J, Gupta V. et al. Efficacy of Intravitreal Dexamethasone Implant in Patients of Uveitis Undergoing Cataract Surgery. Ocul Immunol Inflamm 2019; 27: 1330-1338
- 55 el-Maghraby A, Marzouki A, Matheen TM. et al. Reproducibility and validity of laser flare/cell meter measurements as an objective method of assessing intraocular inflammation. Arch Ophthal 1992; 110: 960-962
- 56 Halim MS, Onghanseng N, Park JH. et al. Effect of Fundus Fluorescein Angiography on Semiautomated Aqueous Flare Measurements. Ocul Immunol Inflamm 2022; 30: 424-427
- 57 El-Harazi SM, Ruiz RS, Feldman RM. et al. Quantitative assessment of aqueous flare: the effect of age and pupillary dilation. Ophthalmic Surg Lasers 2002; 33: 379-382
- 58 Guillén-Monterrubío OM, Hartikainen J, Taskinen K. et al. Quantitative determination of aqueous flare and cells in healthy eyes. Acta Ophthalmol Scand 1997; 75: 58-62
- 59 Oshika T, Araie M, Masuda K. Diurnal variation of aqueous flare in normal human eyes measured with laser flare-cell meter. Jpn J Ophthalmol 1988; 32: 143-150
- 60 Cellini M, Caramazza R, Bonsanto D. et al. Prostaglandin analogs and blood-aqueous barrier integrity: a flare cell meter study. Ophthalmologica 2004; 218: 312-317
- 61 Oshika T, Araie M. Time course of changes in aqueous protein concentration and flow rate after oral acetazolamide. Invest Ophthalmol Vis Sci 1990; 31: 527-534
- 62 Miyake K, Miyake Y, Maekubo K. Increased aqueous flare as a result of a therapeutic dose of mannitol in humans. Graefes Arch Clin Exp Ophthalmol 1992; 230: 115-118
- 63 Mori M, Araie M. Effect of apraclonidine on blood-aqueous barrier permeability to plasma protein in man. Exp Eye Res 1992; 54: 555-559
- 64 Yilmaz M, Guven Yilmaz S, Palamar M. et al. The effects of tropicamide and cyclopentolate hydrochloride on laser flare meter measurements in uveitis patients: a comparative study. Int Ophthalmol 2021; 41: 853-857
- 65 Onodera T, Gimbel HV, DeBroff BM. Aqueous flare and cell number in healthy eyes of Caucasians. Jpn J Ophthalmol 1993; 37: 445-451
- 66 Petternel V, Findl O, Kruger A. et al. Effect of tropicamide on aqueous flare before and after cataract surgery. J Cataract Refract Surg 2000; 26: 382-385
- 67 Wakefield D, Herbort CP, Tugal-Tutkun I. et al. Controversies in ocular inflammation and immunology laser flare photometry. Ocul Immunol Inflamm 2010; 18: 334-340
- 68 Invernizzi A, Marchi S, Aldigeri R. et al. Objective Quantification of Anterior Chamber Inflammation: Measuring Cells and Flare by Anterior Segment Optical Coherence Tomography. Ophthalmology 2017; 124: 1670-1677
- 69 Zierhut M, Heiligenhaus A, deBoer J. et al. Controversies in juvenile idiopathic arthritis-associated uveitis. Ocul Immunol Inflamm 2013; 21: 167-179