CC BY-NC-ND 4.0 · Hamostaseologie 2023; 43(04): 281-288
DOI: 10.1055/a-1984-7210
Original Article

Comparison of Performances among Four Bleeding-Prediction Scores in Elderly Cancer Patients with Venous Thromboembolism

Shaozhi Xi*
1   Department of Comprehensive Surgery, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
2   Department of Geriatrics, Aerospace Center Hospital (ASCH), Beijing, China
,
Chaoyang Liu*
1   Department of Comprehensive Surgery, The Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
,
Shuihua Yu
2   Department of Geriatrics, Aerospace Center Hospital (ASCH), Beijing, China
,
Jingxuan Qiu
2   Department of Geriatrics, Aerospace Center Hospital (ASCH), Beijing, China
,
Shuibo He
2   Department of Geriatrics, Aerospace Center Hospital (ASCH), Beijing, China
,
Zhong Yi
2   Department of Geriatrics, Aerospace Center Hospital (ASCH), Beijing, China
› Author Affiliations

Abstract

The performances of RIETE, VTE-BLEED, SWITCO65 + , and Hokusai-VTE scores for predicting major bleeding events in hospitalized elderly cancer patients with venous thromboembolism (VTE) have not been evaluated. This study validated the performances of these scoring systems in a cohort of elderly cancer patients with VTE. Between June 2015 and March 2021, a total of 408 cancer patients (aged ≥ 65 years) with acute VTE were consecutively enrolled. The overall rates of in-hospital major bleeding and clinically relevant bleeding (CRB) were 8.3% (34/408) and 11.8% (48/408), respectively. RIETE score could categorize patients with increasing rate of major bleeding and CRB into low-/intermediate- and high-risk categories (7.1 vs. 14.1%, p = 0.05 and 10.1 vs. 19.7%, p = 0.02, respectively). The discriminative power of the four scores for predicting major bleeding was poor to moderate, indicated by areas under the receiver operating characteristic curves (0.45 [95% confidence interval, CI: 0.35–0.55] for Hokusai-VTE, 0.54 [95% CI: 0.43–0.64] for SWITCO65 + , 0.58 [95% CI: 0.49–0.68] for VTE-BLEED, and 0.61 [95% CI: 0.51–0.71] for RIETE). RIETE score might be used to predict major bleeding in hospitalized elderly cancer patients with acute VTE.

* Shaozhi Xi and Chaoyang Liu as co-first authors contribute equally to the manuscript.




Publication History

Received: 11 July 2022

Accepted: 21 November 2022

Article published online:
03 May 2023

© 2023. The Author(s). This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commercial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Walker AJ, Card TR, West J, Crooks C, Grainge MJ. Incidence of venous thromboembolism in patients with cancer - a cohort study using linked United Kingdom databases. Eur J Cancer 2013; 49 (06) 1404-1413
  • 2 Prandoni P. How I treat venous thromboembolism in patients with cancer. Blood 2005; 106 (13) 4027-4033
  • 3 Khorana AA, Francis CW, Culakova E, Kuderer NM, Lyman GH. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy. J Thromb Haemost 2007; 5 (03) 632-634
  • 4 Anderson Jr FA, Wheeler HB, Goldberg RJ. et al. A population-based perspective of the hospital incidence and case-fatality rates of deep vein thrombosis and pulmonary embolism. The Worcester DVT Study. Arch Intern Med 1991; 151 (05) 933-938
  • 5 Oger E. Incidence of venous thromboembolism: a community-based study in Western France. EPI-GETBP Study Group. Groupe d'Etude de la Thrombose de Bretagne Occidentale. Thromb Haemost 2000; 83 (05) 657-660
  • 6 Kearon C, Akl EA, Ornelas J. et al. Antithrombotic therapy for VTE disease: CHEST guideline and expert panel report. Chest 2016; 149 (02) 315-352
  • 7 Prandoni P, Lensing AW, Piccioli A. et al. Recurrent venous thromboembolism and bleeding complications during anticoagulant treatment in patients with cancer and venous thrombosis. Blood 2002; 100 (10) 3484-3488
  • 8 Francis CW, Kessler CM, Goldhaber SZ. et al. Treatment of venous thromboembolism in cancer patients with dalteparin for up to 12 months: the DALTECAN Study. J Thromb Haemost 2015; 13 (06) 1028-1035
  • 9 Lee AYY, Kamphuisen PW, Meyer G. et al; CATCH Investigators. Tinzaparin vs warfarin for treatment of acute venous thromboembolism in patients with active cancer: a randomized clinical trial. JAMA 2015; 314 (07) 677-686
  • 10 Lee AY, Levine MN, Baker RI. et al. Randomized comparison of low-molecular-weight heparin versus oral anticoagulant therapy for the prevention of recurrent venous thromboembolism in patients with cancer. N Engl J Med 2003; 349 (02) 146-153
  • 11 Klok FA, Kooiman J, Huisman MV, Konstantinides S, Lankeit M. Predicting anticoagulant-related bleeding in patients with venous thromboembolism: a clinically oriented review. Eur Respir J 2015; 45 (01) 201-210
  • 12 Lecumberri R, Alfonso A, Jiménez D. et al; RIETE Investigators. Dynamics of case-fatality rates of recurrent thromboembolism and major bleeding in patients treated for venous thromboembolism. Thromb Haemost 2013; 110 (04) 834-843
  • 13 Hutten BA, Prins MH, Gent M, Ginsberg J, Tijssen JG, Büller HR. Incidence of recurrent thromboembolic and bleeding complications among patients with venous thromboembolism in relation to both malignancy and achieved international normalized ratio: a retrospective analysis. J Clin Oncol 2000; 18 (17) 3078-3083
  • 14 Fang MC, Chang Y, Hylek EM. et al. Advanced age, anticoagulation intensity, and risk for intracranial hemorrhage among patients taking warfarin for atrial fibrillation. Ann Intern Med 2004; 141 (10) 745-752
  • 15 Fihn SD, Callahan CM, Martin DC, McDonell MB, Henikoff JG, White RH. The National Consortium of Anticoagulation Clinics. The risk for and severity of bleeding complications in elderly patients treated with warfarin. Ann Intern Med 1996; 124 (11) 970-979
  • 16 Abdulla A, Davis WM, Ratnaweera N, Szefer E, Ballantyne Scott B, Lee AYY. A meta-analysis of case fatality rates of recurrent venous thromboembolism and major bleeding in patients with cancer. Thromb Haemost 2020; 120 (04) 702-713
  • 17 Lyman GH, Khorana AA, Kuderer NM. et al; American Society of Clinical Oncology Clinical Practice. Venous thromboembolism prophylaxis and treatment in patients with cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol 2013; 31 (17) 2189-2204
  • 18 Kearon C, Kahn SR, Agnelli G. et al. Antithrombotic therapy for venous thromboembolic disease: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest 2008; 133 (6, Suppl): 454S-545S
  • 19 Khorana AA, McCrae KR, Milentijevic D. et al. Current practice patterns and patient persistence with anticoagulant treatments for cancer-associated thrombosis. Res Pract Thromb Haemost 2017; 1 (01) 14-22
  • 20 Zakai NA, Walker RF, MacLehose RF, Adam TJ, Alonso A, Lutsey PL. Impact of anticoagulant choice on hospitalized bleeding risk when treating cancer-associated venous thromboembolism. J Thromb Haemost 2018; 16 (12) 2403-2412
  • 21 Key NS, Khorana AA, Kuderer NM. et al. Venous thromboembolism prophylaxis and treatment in patients with cancer: ASCO Clinical Practice Guideline update. J Clin Oncol 2020; 38 (05) 496-520
  • 22 van der Hulle T, Kooiman J, den Exter PL, Dekkers OM, Klok FA, Huisman MV. Effectiveness and safety of novel oral anticoagulants as compared with vitamin K antagonists in the treatment of acute symptomatic venous thromboembolism: a systematic review and meta-analysis. J Thromb Haemost 2014; 12 (03) 320-328
  • 23 Mantha S, Laube E, Miao Y. et al. Safe and effective use of rivaroxaban for treatment of cancer-associated venous thromboembolic disease: a prospective cohort study. J Thromb Thrombolysis 2017; 43 (02) 166-171
  • 24 de Winter MA, Dorresteijn JAN, Ageno W. et al. Estimating bleeding risk in patients with cancer-associated thrombosis: evaluation of existing risk scores and development of a new risk score. Thromb Haemost 2022; 122 (05) 818-829
  • 25 Ruíz-Giménez N, Suárez C, González R. et al; RIETE Investigators, Findings from the RIETE Registry. Predictive variables for major bleeding events in patients presenting with documented acute venous thromboembolism. Thromb Haemost 2008; 100 (01) 26-31
  • 26 Klok FA, Hösel V, Clemens A. et al. Prediction of bleeding events in patients with venous thromboembolism on stable anticoagulation treatment. Eur Respir J 2016; 48 (05) 1369-1376
  • 27 Seiler E, Limacher A, Mean M. et al. Derivation and validation of a novel bleeding risk score for elderly patients with venous thromboembolism on extended anticoagulation. Thromb Haemost 2017; 117 (10) 1930-1936
  • 28 Di Nisio M, Raskob G, Büller HR. et al. Prediction of major and clinically relevant bleeding in patients with VTE treated with edoxaban or vitamin K antagonists. Thromb Haemost 2017; 117 (04) 784-793
  • 29 Schulman S, Kearon C. Subcommittee on Control of Anticoagulation of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis. Definition of major bleeding in clinical investigations of antihemostatic medicinal products in non-surgical patients. J Thromb Haemost 2005; 3 (04) 692-694
  • 30 Kaatz S, Ahmad D, Spyropoulos AC, Schulman S. Subcommittee on Control of Anticoagulation. Definition of clinically relevant non-major bleeding in studies of anticoagulants in atrial fibrillation and venous thromboembolic disease in non-surgical patients: communication from the SSC of the ISTH. J Thromb Haemost 2015; 13 (11) 2119-2126
  • 31 Kamphuisen PW, Lee AYY, Meyer G. et al; CATCH Investigators. Clinically relevant bleeding in cancer patients treated for venous thromboembolism from the CATCH study. J Thromb Haemost 2018; 16 (06) 1069-1077
  • 32 Lemeshow S, Hosmer Jr DW. A review of goodness of fit statistics for use in the development of logistic regression models. Am J Epidemiol 1982; 115 (01) 92-106
  • 33 Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982; 143 (01) 29-36
  • 34 Pencina MJ, D'Agostino Sr RB, Steyerberg EW. Extensions of net reclassification improvement calculations to measure usefulness of new biomarkers. Stat Med 2011; 30 (01) 11-21
  • 35 Pencina MJ, D'Agostino Sr RB, D'Agostino Jr RB, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 2008; 27 (02) 157-172 , discussion 207–212
  • 36 Scherz N, Méan M, Limacher A. et al. Prospective, multicenter validation of prediction scores for major bleeding in elderly patients with venous thromboembolism. J Thromb Haemost 2013; 11 (03) 435-443
  • 37 Lyman GH, Culakova E, Poniewierski MS, Kuderer NM. Morbidity, mortality and costs associated with venous thromboembolism in hospitalized patients with cancer. Thromb Res 2018; 164 (Suppl. 01) S112-S118