Subscribe to RSS
DOI: 10.1055/a-2040-9978
Postreanimationsbehandlung – vom Erkennen des Spontankreislaufs zur Intensivmedizin
Die Postreanimationsbehandlung beginnt unmittelbar nach dem Wiedereintritt des Spontankreislaufs (Return of Spontaneous Circulation; ROSC) und endet erst mit der Entlassung der Betroffenen aus der Klinik und der anschließenden Rehabilitationsbehandlung. Insofern haben schon die Maßnahmen, die im Rettungsdienst direkt nach dem ROSC ergriffen werden, einen deutlichen Einfluss auf die Langzeitprognose.
-
Bei Patient*innen mit Kreislaufstillstand, die durch die Reanimation einen Spontankreislauf (ROSC) erlangen, schließt sich unmittelbar nach Erreichen des ROSC die Postreanimationsphase an.
-
Unmittelbar nach dem ROSC sind die Patient*innen häufig noch hämodynamisch und respiratorisch instabil, sodass eine hohe Gefahr eines erneuten Kreislaufstillstands (Re-Arrest) besteht.
-
Um die Gefahr eines Re-Arrests zu minimieren und die neurologische Langzeitprognose zu verbessern, sollten in dieser vulnerablen Phase eine kontinuierliche Überwachung stattfinden und eine strukturierte Postreanimationsbehandlung begonnen werden.
-
Die Postreanimationsbehandlung erfolgt nach dem ABCDE-Schema und hat zum Ziel, eine Normoxie, Normokapnie, Normotension und Fiebervermeidung zu erreichen.
-
Eine endotracheale Intubation durch erfahrene Teams scheint der Verwendung von supraglottischen Atemwegshilfen überlegen zu sein.
-
Es sollte systematisch die Ursache des Kreislaufstillstands gesucht und mögliche Verletzungen identifiziert werden.
-
Zur weiteren Behandlung sollten die Patient*innen in das nächstgelegene geeignete Krankenhaus (am besten Cardiac Arrest Center) transportiert werden.
-
Während des Transports sollte weiterhin eine Reanimationsbereitschaft bestehen.
-
Durch die prähospital durchgeführten Maßnahmen in der Postreanimationsphase kann das Team einen entscheidenden Einfluss auf die Langzeitprognose der Patient*innen nehmen.
Schlüsselwörter
ROSC - Reanimation - ABCDE-Schema - ERC-Leitlinien - Kreislaufstillstand - Return of spontaneous CirculationPublication History
Article published online:
05 December 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Fischer M, Wnent J, Gräsner J-T. et al. Jahresbericht des Deutschen Reanimationsregisters: Außerklinische Reanimation im Notarzt- und Rettungsdienst 2022. Anästh Intensivmed 2023; 64: V161-V169
- 2 Bernard SA, Bray JE, Smith K. et al. Effect of lower vs higher oxygen saturation targets on survival to hospital discharge among patients resuscitated after out-of-hospital cardiac arrest: the EXACT randomized clinical trial. JAMA 2022; 328: 1818-1826
- 3 Nolan JP, Sandroni C, Böttiger BW. et al. European Resuscitation Council and European Society of Intensive Care Medicine Guidelines 2021: post-resuscitation care. Resuscitation 2021; 47: 369-421
- 4 Sulzgruber P, Datler P, Sterz F. et al. The impact of airway strategy on the patient outcome after out-of-hospital cardiac arrest: a propensity score matched analysis. Eur Heart J Acute Cardiovasc Care 2018; 7: 423-431
- 5 Behrens N-H, Fischer M, Krieger T. et al. Effect of airway management strategies during resuscitation from out-of-hospital cardiac arrest on clinical outcome: a registry-based analysis. Resuscitation 2020; 152: 157-164
- 6 Fischer M, Wnent J, Gräsner J-T. et al. Öffentlicher Jahresbericht 2021 des Deutschen Reanimationsregisters: Außerklinische Reanimation 2021. Anästh Intensivmed 2022; 63: V116-V122
- 7 Baldi E, Schnaubelt S, Caputo ML. et al. Association of timing of electrocardiogram acquisition after return of spontaneous circulation with coronary angiography findings in patients with out-of-hospital cardiac arrest. JAMA Netw Open 2021; 4: e2032875
- 8 Bougouin W, Slimani K, Renaudier M. et al. Epinephrine versus norepinephrine in cardiac arrest patients with post-resuscitation shock. Intensive Care Med 2022; 48: 300-310
- 9 Jung H, Lee J, Ahn HY. et al. Safety and feasibility of continuous ketamine infusion for analgosedation in medical and cardiac ICU patients who received mechanical ventilation support: a retrospective cohort study. PLoS One 2022; 17: e0274865
- 10 Soar J, Böttiger BW, Carli P. et al. European Resuscitation Council Guidelines 2021: adult advanced life support. Resuscitation 2021; 161: 115-151
- 11 Wang HE, Schmicker RH, Daya MR. et al. Effect of a strategy of initial laryngeal tube insertion vs endotracheal intubation on 72-hour survival in adults with out-of-hospital cardiac arrest: a randomized clinical trial. JAMA 2018; 320: 769-778
- 12 Crewdson K, Lockey DJ, Røislien J. et al. The success of pre-hospital tracheal intubation by different pre-hospital providers: a systematic literature review and meta-analysis. Crit Care 2017; 21: 31
- 13 Risse J, Fischer M, Meggiolaro KM. et al. Effect of video laryngoscopy for non-trauma out-of-hospital cardiac arrest on clinical outcome: a registry-based analysis. Resuscitation 2023; 185: 109688
- 14 Bernhard M, Beres W, Timmermann A. et al. Prehospital airway management using the laryngeal tube. An emergency department point of view. Anaesthesist 2014; 63: 589-596
- 15 Timmermann A, Böttiger BW, Byhahn C. et al. S1 Leitlinie Prähospitales Atemwegsmanagement. Version 1.9. Stand: 26.02.2019, gültig bis: 25.02.2024. Accessed November 02, 2023 at: https://register.awmf.org/de/leitlinien/detail/001–040
- 16 Scholz KH, Andresen D, Böttiger BW. et al. Qualitätsindikatoren und strukturelle Voraussetzungen für Cardiac-Arrest-Zentren – Deutscher Rat für Wiederbelebung/German Resuscitation Council (GRC). Med Klin Intensivmed Notfmed 2021; 24: 826-830
- 17 Scholz KH, Busch HJ, Frey N. et al. Qualitätskriterien und strukturelle Voraussetzungen für Cardiac Arrest Zentren – Update 2021: Deutscher Rat für Wiederbelebung/German Resuscitation Council (GRC). Notfall Rettungsmed 2021; 24: 826-830
- 18 Rott N, Horriar L, Böttiger BW. 100. Krankenhaus erfolgreich zum Cardiac Arrest Center zertifiziert. Notf Rett Med 2022; 25: 537-540
- 19 Gräsner J-T, Herlitz J, Tjelmeland IBM. et al. European Resuscitation Council Guidelines 2021: epidemiology of cardiac arrest in Europe. Resuscitation 2021; 161: 61-79
- 20 Yeung J, Matsuyama T, Bray J. et al. Does care at a cardiac arrest centre improve outcome after out-of-hospital cardiac arrest? – A systematic review. Resuscitation 2019; 137: 102-115
- 21 Patterson T, Perkins GD, Perkins A. et al. Expedited transfer to a cardiac arrest centre for non-ST-elevation out-of-hospital cardiac arrest (ARREST): a UK prospective, multicentre, parallel, randomised clinical trial. Lancet 2023; 402: 1329-1337
- 22 Khan L, Hutton J, Yap J. et al. The association of the post-resuscitation on-scene interval and patient outcomes after out-of-hospital cardiac arrest. Resuscitation 2023; 188: 109753
- 23 Wyckoff MH, Greif R, Morley PT. et al. 2022 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations: summary from the basic life support; advanced life support; pediatric life support; neonatal life support; education, implementation, and teams; and first aid task forces. Circulation 2022; 146: e483-e557
- 24 Smekal D, Lindgren E, Sandler H. et al. CPR-related injuries after manual or mechanical chest compressions with the LUCAS™ device: a multicentre study of victims after unsuccessful resuscitation. Resuscitation 2014; 85: 1708-1712
- 25 Orlob S, Wittig J, Hobisch C. et al. Reliability of mechanical ventilation during continuous chest compressions: a crossover study of transport ventilators in a human cadaver model of CPR. Scand J Trauma Resusc Emerg Med 2022; 46: 108767
- 26 Bartos JA, Clare Agdamag A, Kalra R. et al. Supraglottic airway devices are associated with asphyxial physiology after prolonged CPR in patients with refractory out-of-Hospital cardiac arrest presenting for extracorporeal cardiopulmonary resuscitation. Resuscitation 2023; 186: 109769
- 27 Belohlavek J, Yannopoulos D, Smalcova J. et al. Intraarrest transport, extracorporeal cardiopulmonary resuscitation, and early invasive management in refractory out-of-hospital cardiac arrest: an individual patient data pooled analysis of two randomised trials. EClinicalMedicine 2023; 59: 101988
- 28 Lott C, Truhlář A, Alfonzo A. et al. European Resuscitation Council Guidelines 2021: cardiac arrest in special circumstances. Resuscitation 2021; 161: 152-219
- 29 Michels G, Wengenmayer T, Hagl C. et al. Empfehlungen zur extrakorporalen kardiopulmonalen Reanimation (eCPR). Kardiologe 2018; 12: 332
- 30 Debaty G, Lamhaut L, Aubert R. et al. Prognostic value of signs of life throughout cardiopulmonary resuscitation for refractory out-of-hospital cardiac arrest. Resuscitation 2021; 162: 163-170
- 31 Wengenmayer T, Rombach S, Ramshorn F. et al. Influence of low-flow time on survival after extracorporeal cardiopulmonary resuscitation (eCPR). Crit Care 2017; 21: 157
- 32 Collet J-P, Thiele H, Barbato E. et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Rev Esp Cardiol 2021; 42: 1289-1367
- 33 Dumas F, Cariou A, Manzo-Silberman S. et al. Immediate percutaneous coronary intervention is associated with better survival after out-of-hospital cardiac arrest: insights from the PROCAT (Parisian Region Out of hospital Cardiac ArresT) registry. Circ Cardiovasc Interv 2010; 3: 200-207
- 34 Zanuttini D, Armellini I, Nucifora G. et al. Predictive value of electrocardiogram in diagnosing acute coronary artery lesions among patients with out-of-hospital-cardiac-arrest. Resuscitation 2013; 84: 1250-1254
- 35 Kern KB, Lotun K, Patel N. et al. Outcomes of comatose cardiac arrest survivors with and without st-segment elevation myocardial infarction: importance of coronary angiography. JACC Cardiovasc Interv 2015; 8: 1031-1040
- 36 Geri G, Dumas F, Bougouin W. et al. Immediate percutaneous coronary intervention is associated with improved short- and long-term survival after out-of-hospital cardiac arrest. Circ Cardiovasc Interv 2015; 8: e002303
- 37 Lemkes JS, Janssens GN, van der Hoeven NW. et al. Coronary angiography after cardiac arrest without ST-segment elevation. N Engl J Med 2019; 380: 1397-1407
- 38 Desch S, Freund A, Akin I. et al. Angiography after out-of-hospital cardiac arrest without ST-segment elevation. N Engl J Med 2021; 385: 2544-2553
- 39 Storm C, Behringer W, Wolfrum S. et al. Praxisleitfaden für die Postreanimationsbehandlung. Med Klin Intensivmed Notfmed 2020; 115: 573-584
- 40 Lemiale V, Dumas F, Mongardon N. et al. Intensive care unit mortality after cardiac arrest: the relative contribution of shock and brain injury in a large cohort. Intensive Care Med 2013; 39: 1972-1980
- 41 Sandroni C, Natalini D, Nolan JP. Temperature control after cardiac arrest. Crit Care 2022; 26: 361
- 42 Bernard SA, Gray TW, Buist MD. et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 2002; 346: 557-563
- 43 Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 2002; 346: 549-556
- 44 Dankiewicz J, Cronberg T, Lilja G. et al. Hypothermia versus normothermia after out-of-hospital cardiac arrest. N Engl J Med 2021; 384: 2283-2294
- 45 Wolfrum S, Roedl K, Hanebutte A. et al. Temperature control after in-hospital cardiac arrest: a randomized clinical trial. Circulation 2022; 146: 1357-1366
- 46 Sandroni C, Nolan JP, Andersen LW. et al. ERC-ESICM guidelines on temperature control after cardiac arrest in adults. Intensive Care Med 2022; 48: 261-269
- 47 Olai H, Thornéus G, Watson H. et al. Meta-analysis of targeted temperature management in animal models of cardiac arrest. Intensive Care Med Exp 2020; 8: 3
- 48 Kim F, Nichol G, Maynard C. et al. Effect of prehospital induction of mild hypothermia on survival and neurological status among adults with cardiac arrest: a randomized clinical trial. JAMA 2014; 311: 45-52
- 49 Bernard SA, Smith K, Cameron P. et al. Induction of therapeutic hypothermia by paramedics after resuscitation from out-of-hospital ventricular fibrillation cardiac arrest: a randomized controlled trial. Circulation 2010; 122: 737-742
- 50 Bernard SA, Smith K, Finn J. et al. Induction of therapeutic hypothermia during out-of-hospital cardiac arrest using a rapid infusion of cold saline: the RINSE trial (rapid infusion of cold normal saline). Circulation 2016; 134: 797-805
- 51 Castrén M, Nordberg P, Svensson L. et al. Intra-arrest transnasal evaporative cooling: a randomized, prehospital, multicenter study (PRINCE: pre-ROSC intra nasal cooling effectiveness). Circulation 2010; 122: 729-736
- 52 Nordberg P, Taccone FS, Truhlar A. et al. Effect of trans-nasal evaporative intra-arrest cooling on functional neurologic outcome in out-of-hospital cardiac arrest: the PRINCESS randomized clinical trial. JAMA 2019; 321: 1677-1685
- 53 Awad A, Taccone FS, Jonsson M. et al. Time to intra-arrest therapeutic hypothermia in out-of-hospital cardiac arrest patients and its association with neurologic outcome: a propensity matched sub-analysis of the PRINCESS trial. Intensive Care Med 2020; 46: 1361-1370
- 54 Roedl K, Wolfrum S, Michels G. et al. Temperature control in adults after cardiac arrest: a survey of current clinical practice in Germany. Crit Care 2023; 27: 35
- 55 Böttiger BW, Hellmich M, Wetsch WA. The effectiveness of targeted temperature management following cardiac arrest may depend on bystander cardiopulmonary resuscitation rates. Eur J Anaesthesiol 2022; 39: 401-402
- 56 Arrich J, Schütz N, Oppenauer J. et al. Hypothermia for neuroprotection in adults after cardiac arrest. Cochrane Database Syst Rev 2023; (05) CD004128
- 57 Granfeldt A, Holmberg MJ, Nolan JP. et al. Temperature control after adult cardiac arrest: an updated systematic review and meta-analysis. Resuscitation 2023; 191: 109928
- 58 Hale SJ, Parker MJ, Cupido C. et al. Applications of postresuscitation debriefing frameworks in emergency settings: a systematic review. AEM Educ Train 2020; 4: 223-230