Synlett 2008(20): 3242-3246  
DOI: 10.1055/s-0028-1087370
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Highly Enantioselective Michael Addition of Malonates to Nitroolefins Catalyzed by Chiral Bifunctional Tertiary Amine-Thioureas Based on Saccharides

Xiao-Juan Li, Kun Liu, Hai Ma, Jing Nie, Jun-An Ma*
Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. of China
Fax: +86(022)27403475; e-Mail: majun_an68@tju.edu.cn;
Further Information

Publication History

Received 14 June 2008
Publication Date:
26 November 2008 (online)

Abstract

A series of saccharide-derived bifunctional tertiary amine-thioureas for the asymmetric Michael addition reaction have been designed and synthesized. The addition products between ­malonates and various nitroolefins were obtained in high yields (up to 99%) and excellent enantioselectivities (up to 99% ee).

    References and Notes

  • For reviews of asymmetric Michael addition reactions, see:
  • 1a Tomioka K. Nagaoka Y. Yamaguchi M. Comprehensive Asymmetric Catalysis   Vol. 3:  Jacobsen
    EN. Pfaltz A. Yamamoto H. Springer; New York: 1999.  Chap. 31.1 and 31.2. p.1105-1139  
  • 1b Krause N. Hoffmann-Röder A. Synthesis  2001,  171 
  • 1c Christoffers J. Baro A. Angew. Chem. Int. Ed.  2003,  42:  1688 
  • 1d Guo H.-C. Ma J.-A. Angew. Chem. Int. Ed.  2006,  45:  354 
  • 1e Enders D. Grondal C. Hüttl MRM. Angew. Chem. Int. Ed.  2007,  46:  1570 
  • For reviews on utility of nitro group, see:
  • 2a Seebach D. Colvin EW. Lehr F. Weller T. Chimia  1979,  33:  1 
  • 2b Barrett AGM. Graboski GG. Chem. Rev.  1986,  86:  751 
  • 2c Rosini G. Ballini R. Synthesis  1988,  833 
  • 2d Tamura R. Kamimura A. Ono N. Synthesis  1991,  423 
  • 2e Fuji K. Node M. Synlett  1991,  603 
  • 2f Ono N. The Nitro Group in Organic Synthesis   Wiley-VCH; New York: 2001. 
  • For selected reviews regarding organocatalysis, see:
  • 3a List B. Acc. Chem. Res.  2004,  37:  548 
  • 3b Dalko PI. Moisan L. Angew. Chem. Int. Ed.  2004,  43:  5138 
  • 3c Notz W. Tanaka F. Barbas CF. Acc. Chem. Res.  2004,  37:  580 
  • 3d Seayad J. List B. Org. Biomol. Chem.  2005,  3:  719 
  • 3e Duthaler RO. Angew. Chem. Int. Ed.  2003,  42:  975 
  • For a review on asymmetric Michael additions to nitroalkenes, see:
  • 4a Berner OM. Tedeschi L. Enders D. Eur. J. Org. Chem.  2002,  1877 
  • 4b Almasi D. Alonso DA. Najera C. Tetrahedron: Asymmetry  2007,  18:  299 
  • 4c Tsogoeva SB. Eur. J. Org. Chem.  2007,  1701 
  • For reviews concerning chiral bifunctional metal complexes as catalysts, see:
  • 5a Shibasaki M. Yoshikawa N. Chem. Rev.  2002,  102:  2187 
  • 5b Ma J.-A. Cahard D. Angew. Chem. Int. Ed.  2004,  43:  4566 
  • For selected reviews concerning chiral bifunctional thiourea-based organocatalysis, see:
  • 5c Takemoto Y. Org. Biomol. Chem.  2005,  3:  4299 
  • 5d Connon SJ. Chem. Eur. J.  2006,  12:  5418 
  • 5e Taylor MS. Jacobsen EN. Angew. Chem. Int. Ed.  2006,  45:  1520 
  • 5f Doyle AG. Jacobsen EN. Chem. Rev.  2007,  107:  5713 
  • 5g Connon SJ. Chem. Commun.  2008,  2499 
  • For selected examples on Jacobsen’s urea and thiourea catalysis, see:
  • 6a Sigman MS. Jacobsen EN. J. Am. Chem. Soc.  1998,  120:  4901 
  • 6b Sigman MS. Vachal P. Jacobsen EN. Angew. Chem. Int. Ed.  2000,  39:  1279 
  • 6c Vachal P. Jacobsen EN. J. Am. Chem. Soc.  2002,  124:  10012 
  • 6d Taylor MS. Jacobsen EN. J. Am. Chem. Soc.  2004,  126:  10558 
  • 6e Yoon TP. Jacobsen EN. Angew. Chem. Int. Ed.  2005,  44:  466 
  • 6f Huang H. Jacobsen EN. J. Am. Chem. Soc.  2006,  128:  7170 
  • 6g Lalonde MP. Chen Y. Jacobsen EN. Angew. Chem. Int. Ed.  2006,  45:  6366 
  • For selected examples on Takemoto’s thiourea catalysis, see:
  • 7a Okino T. Hoashi Y. Takemoto Y. J. Am. Chem. Soc.  2003,  125:  12672 
  • 7b Okino T. Nakamura S. Furukawa T. Takemoto Y. Org. Lett.  2004,  6:  625 
  • 7c Okino T. Hoashi Y. Furukawa T. Xu X. Takemoto Y. J. Am. Chem. Soc.  2005,  127:  119 
  • 7d Hoashi Y. Okino T. Takemoto Y. Angew. Chem. Int. Ed.  2005,  44:  4032 
  • 7e Hoashi Y. Yabuta T. Yuan P. Miyabe H. Takemoto Y. Tetrahedron  2006,  62:  365 
  • 7f Inokuma T. Hoashi Y. Takemoto Y. J. Am. Chem. Soc.  2006,  128:  9413 
  • For selected examples on other chiral thiourea-catalyzed Michael addition reactions, see:
  • 8a McCooey SH. Connon SJ. Angew. Chem. Int. Ed.  2005,  44:  6367 
  • 8b Wang J. Li H. Duan W. Zu L. Wang W. Org. Lett.  2005,  7:  4713 
  • 8c Ye J. Dixon DJ. Hynes PS. Chem. Commun.  2005,  4481 
  • 8d McCooey SH. McCabe T. Connon SJ. J. Org. Chem.  2006,  71:  7494 
  • 8e Tsogoeva SB. Wei S. Chem. Commun.  2006,  1451 
  • 8f Yalalov DA. Tsogoeva SB. Schmatz S. Adv. Synth. Catal.  2006,  348:  826 
  • 8g Cao C.-L. Ye M.-C. Sun X.-L. Tang Y. Org. Lett.  2006,  8:  2901 
  • 8h Cao Y.-Y. Lu H.-H. Lai Y.-Y. Lu L.-Q. Xiao W.-J. Synthesis  2006,  3795 
  • 8i Hynes PS. Stranges D. Stupple PA. Guarna A. Dixon DJ. Org. Lett.  2007,  9:  2107 
  • 8j Cao Y.-J. Lai Y.-Y. Wang X. Li Y.-J. Xiao W.-J. Tetrahedron Lett.  2007,  48:  21 
  • 8k Jiang L. Zheng H.-T. Liu T.-Y. Yue L. Chen Y.-C. Tetrahedron  2007,  63:  5123 
  • 8l Wang C.-J. Zhang Z.-H. Dong X.-Q. Wu X.-J. Chem. Commun.  2008,  1431 
  • 8m Hynes PS. Stupple PA. Dixon DJ. Org. Lett.  2008,  10:  1389 
  • 9a List B. Pojarliev P. Martin HJ. Org. Lett.  2001,  3:  2423 
  • 9b Enders D. Seki A. Synlett  2002,  26 
  • 10a Herrman K. Wynberg H. J. Org. Chem.  1979,  44:  2238 
  • 10b Colonna S. Re A. Wynberg H. J. Chem. Soc., Perkin Trans. 1  1981,  547 
  • 10c Zhang F.-Y. Corey EJ. Org. Lett.  2000,  2:  1097 
  • 11a Ma J.-A, Liu K, Cui H.-F, Nie J, Dong K.-Y, and Li X.-J. inventors; CN Patent  1974009. 
  • 11b Liu K. Cui H.-F. Nie J. Dong K.-Y. Li X.-J. Ma J.-A. Org. Lett.  2007,  9:  923 
  • 12 During the preparation of this manuscript, similar organocatalysts were published by Zhou’s group: Wang C. Zhou Z. Tang C. Org. Lett.  2008,  10:  1707 
  • 13 Evans DA. Mito S. Seidel D. J. Am. Chem. Soc.  2007,  129:  11583 
  • 14 Li X.-J. Zhang G.-W. Wang L. Hua M.-Q. Ma J.-A. Synlett  2008,  1255 
15

A Typical Procedure for the Preparation of Organocatalyst
To a solution of 1, 2-cyclohexyldiamine (3.6 mmol) in CH2Cl2 (20 mL) was added the corresponding saccharide-derived isothiocyanates 1 (3 mmol). The mixture was stirred at r.t. for 3-24 h (TLC) and concentrated. The resulting residue was purified by flash column chromatography with the eluent (EtOAc-Et3N, 100:1) to give the crude solid. The crude solid was dissolved in a minimal amount of CH2Cl2 and slowly precipitated from solution by the addition of PE at 0 ˚C. Filtration afforded the desired thiourea products 2.
Compound 2c: yield 55%; mp 90-92 ˚C; [α]D ²0 -0.5 (c 1.0, CH2Cl2). ¹H NMR (500 MHz, CDCl3): δ = 0.94-1.26 (m,
5 H, cyclohexane-H), 1.66-1.88 (m, 3 H, cyclohexane-H), 1.99 (s, 3 H, COCH3), 2.01 (s, 3 H, COCH3), 2.03 (s, 3 H, COCH3), 2.05 (s, 3 H, COCH3), 2.24 (s, 6 H, 2 NCH3), 2.32 (m, 1 H, NCH), 3.45 (m, 1 H, NCH), 3.81-3.84 (m, 1 H, pyranose-H), 4.09-4.12 (m, 1 H, pyranose-H), 4.27-4.31 (m, 1 H, pyranose-H), 4.93-4.97 (t, 1 H, CH2), 5.05-5.09 (t, 1 H, CH2), 5.29-5.33 (m, 2 H, pyranose-H), 5.58-5.60 (br,
1 H, NH), 6.20 (br, 1 H, NH). ¹³C NMR (125 MHz, CDCl3): δ = 170.85, 170.81, 170.07, 169.85, 83.30, 73.41, 73.5, 73.16, 71.22, 68.50, 61.88, 56.76, 40.46, 32.86, 24.96, 24.58, 22.76, 20.96, 20.94, 20.82, 20.81. IR (KBr): 3352, 2936, 1753, 1542, 1377, 1225, 1035, 910, 758, 601cm. ESI-MS: m/z = 532.26 [M+ + 1].
Compound 2d: yield 50%; mp 83-86 ˚C; [α]D ²0 +4.0 (c 1.0, CH2Cl2). ¹H NMR (500 MHz, CDCl3): δ = 1.03-1.30 (m,
4 H, cyclohexane-H), 1.62-1.91 (m, 4 H, cyclohexane-H), 1.99 (s, 3 H, COCH3), 2.01 (s, 3 H, COCH3), 2.03 (s, 3 H, COCH3), 2.05 (s, 3 H, COCH3), 2.24 (s, 6 H, 2 NCH3), 2.33 (m, 1 H, NCH), 3.45 (m, 1 H, NCH), 3.81-3.84 (m, 1 H, pyranose-H), 4.09-4.12 (m, 1 H, pyranose-H), 4.27-4.32 (m, 1 H, pyranose-H), 4.91-4.99 (t, 1 H, CH2), 5.04-5.09 (t, 1 H, CH2), 5.30-5.33 (m, 2 H, pyranose-H), 5.58-5.60 (br,
1 H, NH), 6.20 (br, 1 H NH). ¹³C NMR (125 MHz, CDCl3): δ = 170.86, 170.81, 170.07, 169.86, 83.30, 73.42, 73.16, 71.22, 68.50, 61.88, 56.76, 40.46, 32.86, 24.98, 24.58, 20.96, 20.94, 20.82, 20.81. IR (KBr): 3352, 2939, 1755, 1545, 1378, 1231, 1038, 907, 755, 602 cm. ESI-MS: m/z = 532.25 [M+ + 1].
Comound 2e: yield 30%; mp 94-97 ˚C; [α]D ²0 +63.0 (c 1.0, CH2Cl2). ¹H NMR (500 MHz, CDCl3): δ = 1.15-1.29 (m,
5 H, cyclohexane-H), 1.64-1.84 (m, 3 H, cyclohexane-H), 1.96-2.01 (s, 12 H, 4 COCH3), 2.01-2.04 (s, 3 H, COCH3), 2.04-2.07 (s, 3 H, COCH3), 2.07-2.10 (s, 3 H, COCH3), 2.19 (s, 6 H, 2 NCH3), 2.24-2.38 (br, 1 H, NCH), 2.41-2.92 (br, 1 H, NCH), 3.76-3.82 (d, 1 H, OCH2, J = 7.0 Hz), 3.84-3.89 (d, 1 H, OCH2, J = 10.5 Hz), 3.98-4.04 (d, 2 H, OCH2, J = 8.0 Hz), 4.04-4.10 (m, 1 H, pyranose-H), 4.16-4.27 (m, 3 H, pyranose-H), 4.42-4.46 (d, 1 H, pyranose-H, J = 12.5 Hz), 4.74-4.82 (m, 2 H, pyranose-H), 5.00-5.07 (m, 1 H, pyranose-H), 5.28-5.42 (m, 2 H, pyranose-H). ¹³C NMR (125 MHz, DMSO): δ = 171.00, 170.86, 170.72, 170.60, 170.04, 169.95, 169.65, 95.60, 82.72, 75.51, 73.77, 72.54, 71.86, 70.19, 69.44, 68.62, 68.13, 62.80, 61.55, 60.60, 56.70, 40.34, 32.76, 29.86, 29.53, 25.06, 24.57, 21.25, 21.08, 21.03, 20.89, 20.82, 20.80, 14.39. IR (KBr): 3354, 2938, 1757, 1542, 1372, 1226, 1046, 940, 906, 754, 601
cm. ESI-MS: m/z = 820.22 [M+ + 1].
Compound 2f: yield 24%; mp 92-94 ˚C; [α]D ²0 +14.1 (c 1.0, CH2Cl2). ¹H NMR (500 MHz, CDCl3): δ = 0.97-1.28 (m,
5 H, cyclohexane-H), 1.54-1.87 (m, 3 H, cyclohexane-H), 1.88-2.25 (m, 27 H, 7 CH3, 2 NCH3), 2.34-2.51 (m, 1 H, NCH), 3.64-3.71 (m, 1 H, pyranose-H), 3.72-3.89 (m, 2 H, pyranose-H), 4.00-4.17 (m, 4 H, OCH2), 4.27-4.48 (m, 2 H, pyranose-H), 4.72-4.87 (m, 1 H, pyranose-H), 4.87-4.93 (m, 1 H, pyranose-H), 5.02-5.09 (m, 1 H, pyranose-H), 5.12-5.27 (m, 1 H, pyranose-H), 5.27-5.31 (m, 1 H, pyranose-H), 5.42-5.65 (br, 1 H, NH). ¹³C NMR (125 MHz, DMSO): δ = 170.97, 170.65, 170.54, 170.34, 170.26, 169.29, 169.11, 100.99, 90.16, 74.00, 73.10, 72.34, 71.19, 70.81, 70.77, 69.29, 69.16, 66.89, 66.83, 61.01, 52.66, 40.15, 34.08, 25.44, 24.80, 24.55., 21.04, 21.02, 20.86, 20.83, 20.81, 20.70, 14.38; IR (KBr): 3357, 2938, 1757, 1542, 1372, 1225, 1046, 940, 906, 754, 602 cm. ESI-MS: m/z = 820.19 [M+ + 1].
Compound 2g: yield 38%; mp 158-160 ˚C; [α]D ²0 +57.9 (c 1.0, CH2Cl2). ¹H NMR (500 MHz, CDCl3): δ = 0.75-0.88 (t, 12 H, CH3), 0.89-1.72 (m, 8 H, cyclohexane-H), 1.72-2.38 (m, 20 H), 3.78-3.88 (m, 1 H, pyranose-H), 3.97-4.11 (m,
1 H, pyranose-H), 4.31-4.44 (m, 1 H, pyranose-H), 4.89-5.12 (m, 2 H, CH2), 5.25-5.37 (m, 1 H, pyranose-H), 5.66-5.83 (m, 1 H, NH), 6.08-6.23 (m, 1 H, pyranose-H), 6.33-6.61 (m, 1 H, NH). ¹³C NMR (125 MHz, CDCl3): δ = 183.17, 171.38, 170.92, 170.04, 169.89, 82.83, 73.37, 73.14, 70.72, 68.63, 63.84, 61.84, 58.91, 55.05, 32.48, 26.80, 25.85, 24.65, 23.09, 21.36, 20.99, 20.95, 20.83, 20.79. IR (KBr): 3371, 2951, 1751, 1511, 1369, 1232, 1038, 909, 759, 594 cm. ESI-MS: m/z = 616.4 [M+ + 1].
Compound 2h: yield 35%; [α]D ²0 +23.3 (c 1.0, CH2Cl2). ¹H NMR (500 MHz, CDCl3): δ = 0.79-0.87 (t, 6 H, CH3), 0.87-1.20 (m, 8 H, CH2), 1.20-1.35 (7 H, cyclohexane-H), 1.63-1.84 (m, 3 H, cyclohexane-H), 1.94-2.08 (q, 12 H, COCH3), 2.15-2.45 (m, 4 H, NCH2), 3.30-3.65 (m, 1 H, NH), 3.72-4.34 (m, 3 H, pyranose-H), 4.90-5.71 (m, 4 H, pyranose-H), 6.35-6.60 (m, 1 H, NH). ¹³C NMR (125 MHz, CDCl3): δ = 183.16, 171.59, 170.83, 170.0, 169.81, 90.11, 82.81, 73.35, 73.04, 71.08, 68.61, 63.63, 62.09, 55.53, 49.55, 32.79, 31.41, 25.75, 24.68, 23.64, 20.91, 20.90, 20.83, 20.78, 14.28. IR (KBr): 3362, 2933, 1758, 1543, 1377, 1232, 1039, 912, 751, 610 cm. ESI-MS: m/z = 616.5 [M+ + 1].