Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000072.xml
Semin Reprod Med 2008; 26(6): 453-460
DOI: 10.1055/s-0028-1096125
© Thieme Medical Publishers
DOI: 10.1055/s-0028-1096125
MicroRNAs and Possible Role in Pituitary Adenoma
Further Information
Publication History
Publication Date:
24 October 2008 (online)
![](https://www.thieme-connect.de/media/srm/200806/lookinside/thumbnails/10.1055-s-0028-1096125-1.jpg)
ABSTRACT
This review reports the current knowledge of microRNA (miRNA) expression in pituitary adenomas, focusing on recent microarray data. Moreover, a discussion is provided concerning the possible role of validated and putative targets of the most dysregulated miRNA in pituitary adenoma pathogenesis.
KEYWORDS
MicroRNA - pituitary - pituitary adenoma
REFERENCES
- 1 Bartel D P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004; 116 281-297
- 2 Kloosterman W P, Plasterk R H. The diverse functions of microRNAs in animal development and disease. Dev Cell. 2006; 11 441-450
- 3 Du T, Zamore P D. microPrimer: the biogenesis and function of microRNA. Development. 2005; 132 4645-4652
- 4 Zeng Y. Principles of micro-RNA production and maturation. Oncogene. 2006; 25 6156-6162
- 5 He L, Hannon G J. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004; 5 522-531
- 6 Bushati N, Cohen S M. microRNA functions. Annu Rev Cell Dev Biol. 2007; 23 175-205
- 7 Vasudevan S, Tong Y, Steitz J A. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007; 318 1931-1934
- 8 Filipowicz W, Bhattacharyya S N, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?. Nat Rev Genet. 2008; 9 102-114
- 9 Esau C, Kang X, Peralta E et al.. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem. 2004; 279 52361-52365
- 10 Poy M N, Eliasson L, Krutzfeldt J et al.. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004; 432 226-230
- 11 Cuellar T L, McManus M T. MicroRNAs and endocrine biology. J Endocrinol. 2005; 187 327-332
- 12 Bak M, Silahtaroglu A, Møller M et al.. MicroRNA expression in the adult mouse central nervous system. RNA. 2008; 14 432-444
- 13 Farh K K, Grimson A, Jan C et al.. The widespread impact of mammalian microRNAs on mRNA repression and evolution. Science. 2005; 310 1817-1821
- 14 Landgraf P, Rusu M, Sheridan R et al.. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007; 129 1401-1414
- 15 Vadstrup S. The adaptation of TSH secretion to autonomy in non-toxic goiter may be based-on active regulation of set-point and sensitivity of central TSH-receptors, perhaps by the microRNA (MIR) gene. Med Hypotheses. 2006; 67 588-591
- 16 Bates A S, Farrell W E, Bicknell E J et al.. Allelic deletion in pituitary adenomas reflects aggressive biological activity and has potential value as a prognostic marker. J Clin Endocrinol Metab. 1997; 82 818-824
- 17 Fan X, Paetau A, Aalto Y et al.. Gain of chromosome 3 and loss of 13q are frequent alterations in pituitary adenomas. Cancer Genet Cytogenet. 2001; 128 97-103
- 18 Knuutila S, Aalto Y, Autio K et al.. DNA copy number losses in human neoplasms. Am J Pathol. 1999; 155 683-694
- 19 Pei L, Melmed S, Scheithauer B, Kovacs K, Benedict W F, Prager D. Frequent loss of heterozygosity at the retinoblastoma susceptibility gene (Rb) locus in aggressive pituitary tumors: evidence for a chromosome 13 tumor uppressor gene other than Rb. Cancer Res. 1995; 55 1613-1616
- 20 Calin G A, Dumitru C D, Shimizu M et al.. Frequent deletions and down-regulation ofmicro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukaemia. Proc Natl Acad Sci U S A. 2002; 99 15524-15529
- 21 Bottoni A, Piccin D, Tagliati F, Luchin A, Zatelli M C, degli Uberti E C. miR-15a and miR-16–1 down-regulation in pituitary adenomas. J Cell Physiol. 2005; 204 280-285
- 22 Cimmino A, Calin G A, Fabbri M et al.. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A. 2005; 103 13944-13949
- 23 Wang D G, Johnston C F, Atkinson A B, Heaney A P, Mirakhur M, Buchanan K D. Expression of bcl-2 oncoprotein in pituitary tumours: comparison with cmyc. J Clin Pathol. 1996; 49 795-797
- 24 Ibba M, Soll D. Aminoacyl-tRNA synthesis. Annu Rev Biochem. 2000; 69 617-650
- 25 Quevillon S, Robinson J C, Berthonneau E, Siatecka M, Mirande M. Macromolecular assemblage of aminoacyl-tRNA synthetases: identification of protein–protein interactions and characterization of a core protein. J Mol Biol. 1999; 285 183-195
- 26 Shalak V, Kaminska M, Mitnacht-Kraus R, Vandenabeele P, Clauss M, Mirande M. The EMAPII cytokine is released from the mammalian multisynthetase complex after cleavage of its p43/proEMAPII component. J Biol Chem. 2001; 276 23769-23776
- 27 Schwarz M A, Kandel J, Brett J et al.. Endothelial-monocyte activating polypeptide II, a novel antitumor cytokine that suppresses primary and metastatic tumor growth and induces apoptosis in growing endothelial cells. J Exp Med. 1999; 190 341-343
- 28 Bottoni A, Vignali C, Piccin D et al.. Proteasomes and RARS modulate AIMP1/EMAP II secretion in human cancer cell lines. J Cell Physiol. 2007; 212 293-297
- 29 Bottoni A, Zatelli M C, Ferracin M et al.. Identification of differentially expressed microRNAs by microarray: a possible role for microRNA genes in pituitary adenomas. J Cell Physiol. 2007; 210 370-377
- 30 Liu C G, Calin G A, Meloon B et al.. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci U S A. 2004; 101 9740-9744
- 31 Volinia S, Calin G A, Liu C G et al.. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A. 2006; 103 2257-2261
- 32 Pagotto U, Arzberger T, Theodoropoulou M et al.. The expression of the antiproliferative gene ZAC is lost or highly reduced in nonfunctioning pituitary adenomas. Cancer Res. 2000; 60 6794-6799
- 33 Spengler D, Villalba M, Hoffmann A et al.. Regulation of apoptosis and cell cycle arrest by Zac1, a novel zinc finger protein expressed in the pituitary gland and the brain. EMBO J. 1997; 16 2814-2825
- 34 Abdollahi A, Bao R, Hamilton T C. LOT1 is a growth suppressor gene down-regulated by the epidermal growth factor receptor ligands and encodes a nuclear zinc-finger protein. Oncogene. 1999; 18 6477-6487
- 35 Pagotto U, Arzberger T, Ciani E et al.. Inhibition of Zac1, a new gene differentially expressed in the anterior pituitary, increases cell proliferation. Endocrinology. 1999; 140 987-996
- 36 Theodoropoulou M, Zhang J, Laupheimer S et al.. Octreotide, a somatostatin analogue mediates its antiproliferative action in pituitary tumor cells by altering phosphatidylinositol 3-kinase signaling and inducing Zac1 expression. Cancer Res. 2006; 66 1576-1582
- 37 Cheng A M, Byrom M W, Shelton J, Ford L P. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 2005; 33 1290-1297
- 38 Iorio M V, Ferracin M, Liu C G et al.. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005; 65 7065-7070
- 39 Takamizawa J, Konishi H, Yanagisawa K et al.. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004; 64 3753-3756
- 40 Sempere L F, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V. Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol. 2004; 5 R13
- 41 Ciafre S A, Galardi S, Mangiola A et al.. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun. 2005; 334 1351-1358
- 42 Seitz H, Youngson N, Lin S P et al.. Imprinted microRNA genes transcribed antisense to a reciprocally imprinted retrotransposon-like gene. Nat Genet. 2003; 34 261-262
- 43 Youngson N, Kocialkowski S, Peel N, Ferguson-Smith A C. A small family of sushi-class retrotransposon derived genes in mammals and their relation to genomic imprinting. J Mol Evol. 2005; 61 481-490
- 44 Georgiades P, Watkins M, Surani M A, Ferguson-Smith A C. Parental origin-specific developmental defects in mice with uniparental disomy for chromosome 12. Development. 2000; 127 4719-4728
- 45 Reik W, Constancia M, Fowden A et al.. Regulation of supply and demand for maternal nutrients in mammals by imprinted genes. J Physiol. 2003; 547 35-44
- 46 Asa S L, Ezzat S. The cytogenesis and pathogenesis of pituitary adenomas. Endocr Rev. 1998; 19 798-827
- 47 Cheng A M, Byrom M W, Shelton J, Ford L P. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 2005; 33 1290-1297
- 48 Hebert C, Norris K, Scheper M A, Nikitakis N, Sauk J J. High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma. Mol Cancer. 2007; 6 5-16
- 49 Reeves R, Nissen M S. The A-T-DNA-binding domain of mammalian high mobility group I chromosomal proteins. A novel peptide motif for recognizing DNA structure. J Biol Chem. 1990; 265 8573-8582
- 50 Thanos D, Maniatis T. Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome. Cell. 1995; 83 1091-1100
- 51 Fedele M, Battista S, Manfioletti G, Croce C M, Giancotti V, Fusco A. Role of the high mobility group A proteins in human lipomas. Carcinogenesis. 2001; 22 1583-1591
- 52 Fedele M, Battista S, Kenyon L et al.. Overexpression of the HMGA2 gene in transgenic mice leads to the onset of pituitary adenomas. Oncogene. 2002; 21 3190-3198
- 53 Finelli P, Pierantoni G M, Giardino D et al.. The high mobility group A2 gene is amplified and overexpressed in human prolactinomas. Cancer Res. 2002; 62 2398-2405
- 54 Fedele M, Pierantoni G M, Visone R, Fusco A. Critical role of the HMGA2 gene in pituitary adenomas. Cell Cycle. 2006; 5 2045-2048
- 55 McCabe C J, Boelaert K, Tannahill L A et al.. Vascular endothelial growth factor, its receptor KDR/Flk-1, and pituitary tumor transforming gene in pituitary tumors. J Clin Endocrinol Metab. 2002; 87 4238-4244
- 56 Niveiro M, Aranda F I, Peiró G, Alenda C, Picó A. Immunohistochemical analysis of tumor angiogenic factors in human pituitary adenomas. Hum Pathol. 2005; 36 1090-1095
- 57 Onofri C, Theodoropoulou M, Losa M et al.. Localization of vascular endoelial growth factor (VEGF) receptors in normal and adenomatous pituitaries: detection of a non-endothelial function of VEGF in pituitary tumours. J Endocrinol. 2006; 191 249-261
- 58 Macleod R M, Thorner M O, Scapagnini U. Basic and Clinical Correlates. Padova, Italy; Liviana Press 1995: 641-653
- 59 Zatelli M C, Piccin D, Vignali C et al.. Pasireotide, a multiple somatostatin receptor subtypes ligand, reduces cell viability in non-functioning pituitary adenomas by inhibiting vascular endothelial growth factor secretion. Endocr Relat Cancer. 2007; 14 91-102
Prof. Ettore C degli Uberti
Section of Endocrinology, Department of Biomedical Sciences and Advanced Therapies, University of Ferrara
Via Savonarola 9, 44100 Ferrara, Italy
Email: dut@unife.it