Int J Sports Med 2009; 30(4): 273-278
DOI: 10.1055/s-0028-1104587
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Rapid Muscle Force Capacity Changes after Soccer Match Play

J. B. Thorlund 1 , P. Aagaard 1 , K. Madsen 2
  • 1Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
  • 2Department of Sports Science, University of Aarhus, Aarhus, Denmark
Further Information

Publication History

accepted after revision September 16, 2008

Publication Date:
06 February 2009 (online)

Abstract

The present study examined the fatigue development in muscle mechanical properties with emphasis on rapid force characteristics and neuromuscular activity in response to high level soccer match play. Young elite soccer players (n=9) were tested before (CON) and after (POST) a soccer match for maximal knee extensor and flexor isometric strength (MVC) and contractile rate of force development (RFD) with synchronous surface electromyography (EMG) recording. Furthermore, maximal vertical jump power and related parameters were assessed. Isometric knee extensor and flexor MVC decreased ∼10% (p≤0.01) along with a right-shift in the moment-time curve. RFD decreased ∼9% (0–200 ms) for the knee flexors while there was a tendency towards reduced RFD during knee extension following soccer match play. Similar reductions were observed for some but not all selected EMG parameters during the MVC and RFD tests. Mechanical jump parameters generally remained unchanged post match play. This study is the first to examine the fatigue induced changes in rapid muscle force production (RFD) induced by soccer match play. The observed decrement in rapid muscle force capacity is likely to have negative impact on performance in explosive playing actions (i.e. accelerations, kicking, sprinting) that typically is involved in soccer match play.

References

  • 1 Aagaard P, Bangsbo J. The muscular system: Design, function and performance relationships. In: Tipton CM, ed. ACSMŽs Advanced Exercise Physiology. Baltimore, MD: Lippincot, Williams & Wilkins 2005: 144-160
  • 2 Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P. Increased rate of force development and neural drive of human skeletal muscle following resistance training.  J Appl Physiol. 2002;  93 1318-1326
  • 3 Andersson H, Raastad T, Nilsson J, Paulsen G, Garthe I, Kadi F. Neuromuscular fatigue and recovery in elite female soccer: effects of active recovery.  Med Sci Sports Exerc. 2008;  40 372-380
  • 4 Bangsbo J, Mohr M, Krustrup P. Physical and metabolic demands of training and match-play in the elite football player.  J Sports Sci. 2006;  24 665-674
  • 5 Caserotti P, Aagaard P, Simonsen EB, Puggaard L. Contraction-specific differences in maximal muscle power during stretch-shortening cycle movements in elderly males and females.  Eur J Appl Physiol. 2001;  84 206-212
  • 6 Day SJ, Hulliger M. Experimental simulation of cat electromyogram: evidence for algebraic summation of motor-unit action-potential trains.  J Neurophysiol. 2001;  86 2144-2158
  • 7 Ruiter CJ de, Kooistra RD, Paalman MI, Haan A de. Initial phase of maximal voluntary and electrically stimulated knee extension torque development at different knee angles.  J Appl Physiol. 2004;  97 1693-1701
  • 8 Ruiter CJ de, Leeuwen D Van, Heijblom A, Bobbert MF, Haan A de. Fast unilateral isometric knee extension torque development and bilateral jump height.  Med Sci Sports Exerc. 2006;  38 1843-1852
  • 9 Enoka RM. Neuromechanics of human movement. 3 ed. Champaign, IL: Human Kinetics 2002
  • 10 Farina D, Fosci M, Merletti R. Motor unit recruitment strategies investigated by surface EMG variables.  J Appl Physiol. 2002;  92 235-247
  • 11 Farina D, Merletti R, Enoka RM. The extraction of neural strategies from the surface EMG.  J Appl Physiol. 2004;  96 1486-1495
  • 12 Fitts RH. Mechanisms of muscular fatigue. In: Poortmans JR, ed. Principles of Exercise Biochemistry. 3 ed. Basel: Karger 2004: 279-300
  • 13 Gleeson NP, Reilly T, Mercer TH, Rakowski S, Rees D. Influence of acute endurance activity on leg neuromuscular and musculoskeletal performance.  Med Sci Sports Exerc. 1998;  30 596-608
  • 14 Keenan KG, Farina D, Maluf KS, Merletti R, Enoka RM. Influence of amplitude cancellation on the simulated surface electromyogram.  J Appl Physiol. 2005;  98 120-131
  • 15 Michalsik LB. Analysis of working demands of Danish handball players. In: WhatŽs going on in the gym? Learning, teaching and research in physical education. Odense: University of Southern Denmark, Institute of Sports Science and Clinical Biomechanincs 2004: 321-330
  • 16 Mohr M, Krustrup P, Bangsbo J. Fatigue in soccer: a brief review.  J Sports Sci. 2005;  23 593-599
  • 17 Mohr M, Krustrup P, Bangsbo J. Match performance of high-standard soccer players with special reference to development of fatigue.  J Sports Sci. 2003;  21 519-528
  • 18 Rahnama N, Reilly T, Lees A, Graham-Smith P. Muscle fatigue induced by exercise simulating the work rate of competitive soccer.  J Sports Sci. 2003;  21 933-942
  • 19 Thorlund JB, Michalsik LB, Madsen K, Aagaard P. Acute fatigue-induced changes in muscle mechanical properties and neuromuscular activity in elite handball players following a handball match.  Scand J Med Sci Sports. 2008;  18(4) 462-472
  • 20 Thorstensson A, Karlsson J, Viitasalo JH, Luhtanen P, Komi PV. Effect of strength training on EMG of human skeletal muscle.  Acta Physiol Scand. 1976;  98 232-236
  • 21 Cutsem M Van, Duchateau J, Hainaut K. Changes in single motor unit behaviour contribute to the increase in contraction speed after dynamic training in humans.  J Physiol. 1998;  513 ((Pt 1)) 295-305

Correspondence

J. B. ThorlundMSc 

Institute of Sports Science and Clinical Biomechanics

University of Southern Denmark

Campusvej 55

5000 Odense C

Denmark

Phone: +45/6550/38 94

Fax: +45/6550/34 80

Email: jthorlund@health.sdu.dk