Z Gastroenterol 2009; 47(7): 653-658
DOI: 10.1055/s-0028-1109055
Originalarbeit

© Georg Thieme Verlag KG Stuttgart · New York

The Effects of Ageing on the Colonic Bacterial Microflora in Adults

Alterungseffekte auf die humane Kolon-DarmfloraP. Enck1 , K. Zimmermann2 , K. Rusch2 , A. Schwiertz2 , S. Klosterhalfen1, 4 , J.-S. Frick3
  • 1Psychosomatic Medicine, University Hospitals, Tübingen
  • 2Symbio Herborn Group GmbH, Herborn
  • 3Institute for Medical Microbiology and Hygiene, University Hospitals, Tübingen
  • 4Institute for Clinical Neurosciences and Medical Psychology, Düsseldorf
Further Information

Publication History

manuscript received: 6.9.2008

manuscript accepted: 10.11.2008

Publication Date:
15 July 2009 (online)

Zusammenfassung

Hintergrund: Die Zusammensetzung der Darmflora und deren Änderungen im Alter sind selten Gegenstand der Forschung gewesen, weder bei gesunden Probanden noch bei Patienten. Methoden: Wir analysierten die fäkale Flora mittels konventioneller mikrobiologischer Kulturtechnik (Kyberstatus®, Institut für Mikroökologie, Herborn) aus Stuhlproben von 35 292 Erwachsenen (46,3 ± 0,08 [18 bis 96] Jahre, 9564 Männer: 24 784 Frauen; verbleibende = fehlend) mit unterschiedlichen intestinalen und nicht intestinalen Diagnosen auf die Gesamtflora (total colony forming units – CFU) (pro g Stuhl) wie auch auf die relative Häufigkeit (abundance) von Bifidobacteria, Bacteroides spp., Escherichia coli, Enterococcus spp. und Lactobacillus spp. im Hinblick auf Alter, Geschlecht und verfügbaren klinischen Daten (z. B. die Stuhlkonsistenz und den pH). Ergebnisse: Die Gesamt-CFU war stabil und zeigt keine alters- und geschlechtsabhängige Veränderung. Individuelle bakterielle Species stiegen entweder konstant und signifikant mit dem Alter an (E. coli, Enterococci spp.), sanken mit steigendem Alter ab (Bacteroides spp.) oder blieben über die Lebensspanne hinweg gleich (Lactobacilli, Bifidobacteria). Gastrointestinale Diagnosen (Morbus Crohn, n = 198; Colitis ulcerosa, n = 515; Reizdarmsyndrome, n = 7765; andere GI-Diagnosen, n = 10 478) zeigten tendenziell eine Spezifität des bakteriellen Profils; wurden die gastroenterologischen Diagnosen ausgeschlossen, änderten sich die Altersprofile der Restgruppe (n = 15 619, 4197:11 422) nicht. Schlussfolgerungen: Eine konventionelle mikrobiologische Untersuchung der fäkalen Mikroflora zeigt sowohl bakterienspezifische als auch allgemeine Muster der Alterung der Flora, wobei sich in den letzten Dekaden des Lebens (älter als 60 Jahre) die profundesten Veränderungen zeigen. Es müsste jedoch geklärt werden, ob dies direkte Veränderungen der Flora sind, Folge der altersbedingte Änderungen des mukosalen Immunsystems oder ob sie infolge von Änderungen der Ernährung im Alter auftreten.

Abstract

Background: The composition of the fecal mircoflora and its changes on ageing have rarely been investigated in large samples of both patients and volunteers. Methods: We analysed the fecal flora by conventional microbiological testing (Kyberstatus®, Institute of Microecology, Herborn, Germany) of stool samples from 35 292 adults (age: 46.3 ± 0.08 [18 to 96] years, 9564 males, 24 784 females; remaining = missing data) with different intestinal and non-intestinal diagnoses for total colony-forming units (CFU) (per g stool) as well as relative abundance of Bifidobacteria, Bacteroides spp., Escherichia coli, Enterococcus spp., and Lactobacillus spp. with respect to age, gender, and clinical data available (e. g., stool consistency and pH). Results: The total CFU was stable and showed no age- or gender-related changes. Individual bacterial species constantly and significantly increased with age (E. coli, Enterococci spp.), or decreased at higher age (Bacteroides spp.), or were stable throughout the life span (Lactobacilli, Bifidobacteria). Gastrointestinal diagnoses (Crohn’s disease, n = 198; ulcerative colitis, n = 515; irritable bowel syndrome, n = 7765; other GI diagnoses, n = 10 478) tended to exhibit some specificity of the bacterial profile, and when GI diagnoses were excluded, the age-related bacterial profile of the remaining group (n = 15 619, m:f = 4197:11 422) was not different. Conclusion: Conventional microbiological investigations of the fecal microbiota showed both bacteria-specific as well as a general pattern of ageing of the colonic microbiota, with the last decades (more than 60 years) demonstrating the most profound changes. It remains to be shown whether these changes reflect direct changes of the gut microbiota, the mucosal innate immunity, or indirect consequences of age-related altered nutrition.

References

  • 1 Gueimonde M, Ouwehand A, Huhtinen H. et al . Qualitative and quantitative analyses of the bifidobacterial microbiota in the colonic mucosa of patients with colorectal cancer, diverticulitis and inflammatory bowel disease.  World J Gastroenterol. 2007;  13 3985-3989
  • 2 Mylonaki M, Rayment N B, Rampton D S. et al . Molecular characterization of rectal mucosa-associated bacterial flora in inflammatory bowel disease.  Inflamm Bowel Dis. 2005;  11 481-487
  • 3 Moore W E, Moore L H. Intestinal floras of populations that have a high risk of colon cancer.  Appl Environ Microbiol. 1995;  61 3202-3207
  • 4 Benno Y, Endo K, Mizutani T. et al . Comparison of fecal microflora of elderly persons in rural and urban areas of Japan.  Appl Environ Microbiol. 1989;  55 1100-1105
  • 5 Hayashi H, Sakamoto M, Benno Y. Fecal microbial diversity in a strict vegetarian as determined by molecular analysis and cultivation.  Microbiol Immunol. 2002;  46 819-831
  • 6 Finegold S M, Attebery H R, Sutter V L. Effect of diet on human fecal flora: comparison of Japanese and American diets.  Am J Clin Nutr. 1974;  27 1456-1469
  • 7 Mueller S, Saunier K, Hanisch C. et al . Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study.  Appl Environ Microbiol. 2006;  72 1027-1033
  • 8 Ferguson L R, Shelling A N, Browning B L. et al . Genes, diet and inflammatory bowel disease.  Mutat Res. 2007;  622 70-83
  • 9 Milner J A. Nutrition and cancer: Essential elements for a roadmap.  Cancer Lett. 2008;  269 189-198
  • 10 Bruzzese E, Canani R B, De Marco G. et al . Microflora in inflammatory bowel diseases: a pediatric perspective.  J Clin Gastroenterol. 2004;  38 S91-S93
  • 11 Hudson M J, Hill M J, Elliott P R. et al . The microbial flora of the rectal mucosa and faeces of patients with Crohn’s disease before and during antimicrobial chemotherapy.  J Med Microbiol. 1984;  18 335-345
  • 12 McFarland L V, Dublin S. Meta-analysis of probiotics for the treatment of irritable bowel syndrome.  World J Gastroenterol. 2008;  14 2650-2661
  • 13 Nikfar S, Rahimi R, Rahimi F. et al . Efficacy of probiotics in irritable bowel syndrome: a meta-analysis of randomized, controlled trials.  Dis Colon Rectum. 2008;  51 1775-1780
  • 14 Rembacken B J, Snelling A M, Hawkey P M. et al . Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a randomised trial.  Lancet. 1999;  354 635-639
  • 15 Lievin-Le M V, Sarrazin-Davila L E, Servin A L. An experimental study and a randomized, double-blind, placebo-controlled clinical trial to evaluate the antisecretory activity of Lactobacillus acidophilus strain LB against nonrotavirus diarrhea.  Pediatrics. 2007;  120 e795-e803
  • 16 Gionchetti P, Rizzello F, Venturi A. et al . Probiotics in infective diarrhoea and inflammatory bowel diseases.  J Gastroenterol Hepatol. 2000;  15 489-493
  • 17 Gionchetti P, Rizzello F, Venturi A. et al . Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: a double-blind, placebo-controlled trial.  Gastroenterology. 2000;  119 305-309
  • 18 Gill H S. Probiotics to enhance anti-infective defences in the gastrointestinal tract.  Best Pract Res Clin Gastroenterol. 2003;  17 755-773
  • 19 Cong Y, Konrad A, Iqbal N. et al . Probiotics and immune regulation of inflammatory bowel diseases.  Curr Drug Targets Inflamm Allergy. 2003;  2 145-154
  • 20 Arslanoglu S, Moro G E, Schmitt J. et al . Early dietary intervention with a mixture of prebiotic oligosaccharides reduces the incidence of allergic manifestations and infections during the first two years of life.  J Nutr. 2008;  138 1091-1095
  • 21 Huurre A, Laitinen K, Rautava S. et al . Impact of maternal atopy and probiotic supplementation during pregnancy on infant sensitization: a double-blind placebo-controlled study.  Clin Exp Allergy. 2008;  38 1342-1348
  • 22 Zuccotti G V, Meneghin F, Raimondi C. et al . Probiotics in clinical practice: an overview.  J Int Med Res. 2008;  36 (Suppl 1) 1A-53A
  • 23 Salminen S, Gueimonde M. Gut microbiota in infants between 6 and 24 months of age.  Nestle Nutr Workshop Ser Pediatr Program. 2005;  56 43-51
  • 24 Hopkins M J, Sharp R, Macfarlane G T. Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles.  Gut. 2001;  48 198-205
  • 25 Woodmansey E J. Intestinal bacteria and ageing.  J Appl Microbiol. 2007;  102 1178-1186
  • 26 Harmsen H J, Wildeboer-Veloo A C, Grijpstra J. et al . Development of 16S rRNA-based probes for the Coriobacterium group and the Atopobium cluster and their application for enumeration of Coriobacteriaceae in human feces from volunteers of different age groups.  Appl Environ Microbiol. 2000;  66 4523-4527
  • 27 Saunier K, Dore J. Gastrointestinal tract and the elderly: functional foods, gut microflora and healthy ageing.  Dig Liver Dis. 2002;  34 (Suppl 2) S19-S24
  • 28 Blaut M, Collins M D, Welling G W. et al . Molecular biological methods for studying the gut microbiota: the EU human gut flora project.  Br J Nutr. 2002;  87 (Suppl 2) S203-S211
  • 29 He F, Ouwehand A C, Isolauri E. et al . Differences in composition and mucosal adhesion of bifidobacteria isolated from healthy adults and healthy seniors.  Curr Microbiol. 2001;  43 351-354
  • 30 Ouwehand A C, Isolauri E, Kirjavainen P V. et al . Adhesion of four Bifidobacterium strains to human intestinal mucus from subjects in different age groups.  FEMS Microbiol Lett. 1999;  172 61-64
  • 31 Eschenbach D A, Davick P R, Williams B L. et al . Prevalence of hydrogen peroxide-producing Lactobacillus species in normal women and women with bacterial vaginosis.  J Clin Microbiol. 1989;  27 251-256
  • 32 Guigoz Y, Dore J, Schiffrin E J. The inflammatory status of old age can be nurtured from the intestinal environment.  Curr Opin Clin Nutr Metab Care. 2008;  11 13-20
  • 33 Hayashi H, Sakamoto M, Kitahara M. et al . Molecular analysis of fecal microbiota in elderly individuals using 16S rDNA library and T-RFLP.  Microbiol Immunol. 2003;  47 557-570
  • 34 Bouhnik Y, Raskine L, Simoneau G. et al . The capacity of nondigestible carbohydrates to stimulate fecal bifidobacteria in healthy humans: a double-blind, randomized, placebo-controlled, parallel-group, dose-response relation study.  Am J Clin Nutr. 2004;  80 1658-1664
  • 35 Palframan R J, Gibson G R, Rastall R A. Carbohydrate preferences of Bifidobacterium species isolated from the human gut.  Curr Issues Intest Microbiol. 2003;  4 71-75
  • 36 Roberfroid M B, Van Loo J A, Gibson G R. The bifidogenic nature of chicory inulin and its hydrolysis products.  J Nutr. 1998;  128 11-19
  • 37 Liu C, Song Y, McTeague M. et al . Rapid identification of the species of the Bacteroides fragilis group by multiplex PCR assays using group- and species-specific primers.  FEMS Microbiol Lett. 2003;  222 9-16

Prof. Dr. Paul Enck

Dept. of Internal Medicine VI, Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen

Frondsbergstr. 23

72076 Tübingen

Germany

Phone: ++ 49/70 71/2 98 91 18

Fax: ++ 49/70 71/29 43 82

Email: paul.enck@uni-tuebingen.de