Klin Monbl Augenheilkd 2010; 227(2): 108-113
DOI: 10.1055/s-0028-1109977
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Oxidativer Stress beim Pseudoexfoliationsglaukom

Oxidative Stress and Pseudoexfoliation GlaucomaU. Schlötzer-Schrehardt1
  • 1Augenklinik, Universität Erlangen-Nürnberg
Further Information

Publication History

Eingegangen: 4.11.2009

Angenommen: 30.11.2009

Publication Date:
12 February 2010 (online)

Zusammenfassung

Dem Pseudoexfoliations(PEX)-Glaukom, der mit Abstand wichtigsten und häufigsten Form der Sekundärglaukome, liegt ein generalisierter, genetisch determinierter, elastotischer Matrixprozess als identifizierbare Glaukomursache zugrunde. Er ist charakterisiert durch die exzessive Produktion und progressive Ablagerung eines fibrillären extrazellulären Materials in verschiedenen Geweben einschließlich der Kammerwasserabflusswege. Eine wachsende Datenlage scheint zu bestätigen, dass die oxidative-antioxidative Balance bei Patienten mit PEX-Syndrom und PEX-Glaukom, sowohl im vorderen Augenabschnitt als auch systemisch, gestört ist und dass der daraus resultierende oxidative Stress eine zentrale Rolle in der Pathogenese des abnormalen Matrixprozesses spielt. Störungen der antioxidativen Schutzmechanismen umfassen erniedrigte Konzentrationen von Ascorbinsäure, Glutathion, antioxidativen Spurenelementen und verschiedenen antioxidativen Enzymen, welche auch eine Dysregulation auf mRNA-Ebene in PEX-Geweben zeigen. Als weitere Hinweise auf das Vorliegen von oxidativem Stress dienen erhöhte Konzentrationen von Oxidantien, wie Wasserstoffperoxid und Stickstoffmonoxid, und oxidativer Stressmarker, wie Lipidperoxidationsprodukte, Abbauprodukte oxidierter und methylierter Proteine, Advanced Glycation End Products und Homocystein in Kammerwasser, Serum und okulären Geweben. Grundlagenforschungen konnten weiterhin zeigen, dass chronischer oxidativer Stress, zusammen mit unzureichenden zellulären Schutz- und Reparaturmechanismen, den aberranten Matrixmetabolismus durch Induktion einer anhaltenden subklinischen Entzündungsreaktion und Aktivierung des profibrotischen Wachstumsfaktors TGF-β1 entscheidend beeinflussen kann. Oxidativer Stress scheint demnach einen modifizierbaren Risikofaktor in der Behandlung von Patienten mit PEX-Syndrom/Glaukom darzustellen.

Abstract

Pseudoexfoliation (PEX) glaucoma is the most common identifiable cause of open-angle glaucoma worldwide, comprising the majority of glaucoma in some countries. The underlying disorder, PEX syndrome, is a generalised, genetically determined, elastotic process of the extracellular matrix characterised by the excessive production and progressive accumulation of a fibrillar material in various tissues including the outflow pathways. Increasing evidence suggests that the oxidative-antioxidative balance is disturbed in patients with PEX syndrome/glaucoma, both in the anterior segment and throughout the body, and that the resulting oxidative stress constitutes a major mechanism involved in the pathophysiology of this fibrotic process. Significantly reduced levels of antioxidants, such as ascorbic acid, glutathione, trace elements, antioxidative enzymes, and total antioxidative capacity in aqueous humor and serum suggest a faulty antioxidative defense system in PEX patients. The down-regulation of antioxidative enzymes in anterior segment tissues also indicates an inadequate cytoprotection against oxidative stress. Concomitantly, levels of oxidants such as hydrogen peroxide or nitric oxide, and oxidative stress markers, including lipid peroxidation products, degradation products of oxidated and methylated proteins, advanced glycation end products, and homocysteine are significantly increased in aqueous humor, tissues, and serum. The available data suggest that chronic oxidative stress in combination with weakened cytoprotective and repair strategies affects the abnormal matrix metabolism by induction of a persistent pro-inflammatory state and activation of the profibrotic growth factor TGF-β1. Oxidative stress, therefore, appears to represent a modifiable risk factor in the management of patients with PEX syndrome/glaucoma.

Literatur

  • 1 Vogt A. Ein neues Spaltlampenbild des Pupillengebiets: Hellblauer Pupillensaumfilz mit Häutchenbildung auf der Linsenvorderkapsel.  Klin Monatsbl Augenheilkd. 1925;  75 1-12
  • 2 Ritch R, Schlötzer-Schrehardt U. Exfoliation syndrome.  Surv Ophthalmol. 2001;  45 265-315
  • 3 Naumann G OH, Schlötzer-Schrehardt U, Küchle M. Pseudoexfoliation syndrome for the comprehensive ophthalmologist. Intraocular and systemic manifestations.  Ophthalmology. 1998;  105 951-968
  • 4 Schlötzer-Schrehardt U, Naumann G OH. Perspective – Ocular and systemic pseudoexfoliation syndrome.  Am J Ophthalmol. 2006;  141 921-937
  • 5 Thorleifsson G, Magnusson K P, Sulem P. et al . Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma.  Science. 2007;  317 1397-400
  • 6 Krumbiegel M, Pasutto F, Mardin C Y. et al . Exploring functional candidate genes for genetic association in German patients with pseudoexfoliation syndrome and pseudoexfoliation glaucoma.  Invest Ophthalmol Vis Sci. 2009;  50 2796-2801
  • 7 Arnarsson A, Damji K F, Sasaki H. et al . Pseudoexfoliation in the Reykjavik Eye Study: Five-year incidence and changes in related ophthalmologic variables.  Am J Ophthalmol. 2009;  148 291-297
  • 8 Koliakos G G, Konstas A GP, Schlötzer-Schrehardt U. et al . Ascorbic acid concentration is reduced in the aqueous humor of patients with exfoliation syndrome.  Am J Ophthalmol. 2002;  134 879-883
  • 9 Koliakos G G, Konstas A GP, Schlötzer-Schrehardt U. et al . 8-isoprostaglandin F 2A and ascorbic acid concentration in the aqueous humour of patients with exfoliation syndrome.  Br J Ophthalmol. 2003;  87 353-356
  • 10 Berke A. Vitamine und Auge.  Optometrie. 2001;  4 28-38
  • 11 Yilmaz A, Adigüzel U, Tamer L. et al . Serum oxidant/antioxidant balance in exfoliation syndrome.  Clin Exp Ophthalmol. 2005;  33 63-66
  • 12 Zoric L, Miric D, Milenkovic S. et al . Pseudoexfoliation syndrome and its antioxidative protection deficiency as risk factors for age-related cataract.  Eur J Ophthalmol. 2006;  16 268-273
  • 13 Yagci R, Gürel A, Ersöz I. et al . Oxidative stress and protein oxidation in pseudoexfoliation syndrome.  Curr Eye Res. 2006;  31 1029-1032
  • 14 Koliakos G G, Befani C D, Mikropoulos D. et al . Prooxidant-antioxidant balance, peroxide and catalase activity in the aqueous humour and serum of patients with exfoliation syndrome or exfoliative glaucoma.  Graefes Arch Clin Exp Ophthalmol. 2008;  246 1477-1483
  • 15 Yagci R, Gürel A, Ersöz I. et al . The activities of paraoxonase, xanthine oxidase, adenosine deaminase and the level of nitrite in pseudoexfoliation syndrome.  Ophthalmic Res. 2009;  42 155-159
  • 16 Ucakhan Ö, Karel F, Kanpolat A. et al . Superoxide dismutase activity in the lens capsule of patients with pseudoexfoliation syndrome and cataract.  J Cataract Refract Surg. 2006;  32 618-622
  • 17 Gartaganis S P, Georgakopoulos C D, Patsoukis N E. et al . Glutathione and lipid peroxide changes in pseudoexfoliation syndrome.  Curr Eye Res. 2005;  30 647-651
  • 18 Gartaganis S P, Patsoukis N E, Nikolopoulos D K. et al . Evidence for oxidative stress in lens epithelial cells in pseudoexfoliation syndrome.  Eye. 2007;  21 1406-1411
  • 19 Laganovska G, Martinsons A, Pitrans B. et al . Kynurenine and neopterin in the aqueous humor of the anterior chamber of the eye and in serum of cataract patients.  Adv Exp Med Biol. 2003;  527 367-374
  • 20 Yildirim Z, Ucgun N I, Kilic N. et al . Pseudoexfoliation syndrome and trace elements.  Ann N Y Acad Sci. 2007;  1100 207-212
  • 21 Zenkel M, Pöschl E, der Mark von K. et al . Differential gene expression in pseudoexfoliation syndrome.  Invest Ophthalmol Vis Sci. 2005;  46 3742-3752
  • 22 Zenkel M, Kruse F E, Naumann G OH. et al . Impaired cytoprotective mechanisms in eyes with pseudoexfoliation syndrome/glaucoma.  Invest Ophthalmol Vis Sci. 2007;  48 5558-5566
  • 23 Abu-Amero K K, Morales J, Mohamed G H. et al . Glutathione S-transferase M 1 and T 1 polymorphisms in Arab glaucoma patients.  Mol Vis. 2008;  14 425-430
  • 24 Rönkkö S, Rekonen P, Kaarniranta K. et al . Phospholipase A 2 in chamber angle of normal eyes and patients with primary open angle glaucoma and exfoliation glaucoma.  Mol Vis. 2007;  13 408-417
  • 25 Kotikoski H, Moilanen E, Vapaatalo H. et al . Biochemical markers of the L-arginine-nitric oxide pathway in the aqueous humour in glaucoma patients.  Acta Ophthalmol Scand. 2002;  80 191-195
  • 26 Altintas Ö, Maral H, Yüksel N. et al . Homocysteine and nitric oxide levels in plasma of patients with pseudoexfoliation syndrome, pseudoexfoliation glaucoma, and primary open-angle glaucoma.  Graefes Arch Clin Exp Ophthalmol. 2005;  243 677-683
  • 27 Schlötzer-Schrehardt U, Zenkel M, Decking U. et al . Selective upregulation of the A 3 adenosine receptor in eyes with pseudoexfoliation syndrome and glaucoma.  Invest Ophthalmol Vis Sci. 2005;  46 2023-2034
  • 28 Faschinger C, Schmut O, Wachswender C. et al . Glaukom und oxidativer Stress.  Ophthalmologe. 2006;  103 953-959
  • 29 Yagci R, Ersöz I, Erdurmus M. et al . Protein carbonyl levels in the aqueous humour and serum of patients with pseudoexfoliation syndrome.  Eye. 2008;  22 128-131
  • 30 Dawczynski J, Vater C, Kasper M. et al . Zur Bedeutung von Advanced Glycation End Products (AGE’s) beim Pseudoexfoliationssyndrom (PXS) – Korrelation klinischer Ergebnisse mit immunhistologischen Untersuchungen an humanen Linsenkapseln.  Klin Monatsbl Augenheilkd. 2006;  223 748-751
  • 31 Tyagi N, Sedoris K C, Steed M. et al . Mechanisms of homocysteine-induced oxidative stress.  Am J Physiol Heart Circ Physiol. 2005;  289 H2649-H2656
  • 32 Bleich S, Jünemann A, Ahsen von N. et al . Homocysteine and risk of open-angle glaucoma.  J Neural Transm. 2002;  109 499-1504
  • 33 Bleich S, Roedl J, Ahsen von N. et al . Elevated homocysteine levels in aqueous humor of patients with pseudoexfoliation glaucoma.  Am J Ophthalmol. 2004;  138 162-164
  • 34 Roedl J B, Bleich S, Reulbach U. et al . Homocysteine in tear fluid of patients with pseudoexfoliation glaucoma.  J Glaucoma. 2007;  16 234-239
  • 35 Roedl J B, Bleich S, Reulbach U. et al . Vitamin deficiency and hyperhomocysteinemia in pseudoexfoliation glaucoma.  J Neural Transm. 2007;  114 571-575
  • 36 Blomster H, Puustjärvi T, Kontkanen M. et al . Asymmetric dimethylarginine is not elevated in exfoliation syndrome but symmetric dimethylarginine is related to exfoliative glaucoma.  Graefes Arch Clin Exp Ophthalmol. 2007;  245 204-209
  • 37 Liton P B, Gonzalez P. Stress response of the trabecular meshwork.  J Glaucoma. 2008;  17 378-385
  • 38 Maggio M, Guralnik J M, Longo D L. et al . Interleukin-6 in aging and chronic disease: a magnificent pathway.  J Gerontol Biol Sci Med Sci. 2006;  61A 575-584
  • 39 Zenkel M, Lewczuk P, Jünemann A. et al . Pro-inflammatory cytokines are involved in initiation of the abnormal matrix process in pseudoexfoliation syndrome/glaucoma.  Am J Pathol. 2009;  (submitted)
  • 40 Gottanka J, Flügel-Koch C, Martus P. Correlation of pseudoexfoliative material and optic nerve damage in pseudoexfoliation syndrome.  Invest Ophthalmol Vis Sci. 1997;  38 2435-2446

Prof. Dr. Ursula Schlötzer-Schrehardt

Augenklinik, Universität Erlangen-Nürnberg

Schwabachanlage 6

91054 Erlangen

Phone: ++ 49/91 31/8 53 44 33

Fax: ++ 49/91 31/8 53 46 31

Email: ursula.schloetzer@augen.imed.uni-erlangen.de