Semin Thromb Hemost 2008; 34(8): 734-741
DOI: 10.1055/s-0029-1145255
© Thieme Medical Publishers

The Pivotal Role of Thrombin in Cancer Biology and Tumorigenesis

Kristen M. Snyder1 , Craig M. Kessler1
  • 1Divisions of Pediatric and Adult Hematology-Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC
Further Information

Publication History

Publication Date:
12 February 2009 (online)

ABSTRACT

The association of cancer and thrombosis has been known for nearly 150 years. Compared with patients without cancer, those with cancer have an increased risk of thrombosis and recurrent thrombosis. It is now well accepted that patients with idiopathic venous thromboembolism are also at increased risk of later being diagnosed with cancer. This is further confirmation of the intertwined nature of cancer and thrombosis. Although the mechanisms of this association are still under examination, much work has accrued over the past two decades to suggest an influence of thrombin on cancer biology. This review focuses on the important role of thrombin in cancer research; recent in vitro work illustrating the mechanisms by which thrombin may affect cancer angiogenesis, cell invasion, and enhanced tumor metastasis; and on clinical trials investigating the potential role of antithrombotics in cancer incidence and survival.

REFERENCES

  • 1 Bura A, Cailleux N, Bienvenu B et al.. Incidence and prognosis of cancer associated with bilateral venous thrombosis: a prospective study of 103 patients.  J Thromb Haemost. 2004;  2 441-444
  • 2 Blom J W, Doggen C J, Osanto S, Rosendaal F R. Malignancies, prothrombotic mutations, and the risk of venous thrombosis.  JAMA. 2005;  293 715-722
  • 3 Levitan N, Dowlati A, Remick S C et al.. Rates of initial and recurrent thromboembolic disease among patients with malignancy versus those without malignancy. Risk analysis using Medicare claims data.  Medicine (Baltimore). 1999;  78 285-291
  • 4 Khorana A A, Francis C W, Culakova E, Kuderer N M, Lyman G H. Thromboembolism is a leading cause of death in cancer patients receiving outpatient chemotherapy.  J Thromb Haemost. 2007;  5 632-634
  • 5 Wojtukiewicz M Z, Tang D G, Ciarelli J J et al.. Thrombin increases the metastatic potential of tumor cells.  Int J Cancer. 1993;  54 793-806
  • 6 Davie E W, Kulman J D. An overview of the structure and function of thrombin.  Semin Thromb Hemost. 2006;  32(Suppl 1) 3-15
  • 7 Chen L B, Buchanan J M. Mitogenic activity of blood components. I. Thrombin and prothrombin.  Proc Natl Acad Sci U S A. 1975;  72 131-135
  • 8 Maruyama I, Shigeta K, Miyahara H et al.. Thrombin activates NF-kappa B through thrombin receptor and results in proliferation of vascular smooth muscle cells: role of thrombin in atherosclerosis and restenosis.  Ann N Y Acad Sci. 1997;  811 429-436
  • 9 Dabbagh K, Laurent G J, McAnulty R J, Chambers R C. Thrombin stimulates smooth muscle cell procollagen synthesis and mRNA levels via a PAR-1 mediated mechanism.  Thromb Haemost. 1998;  79 405-409
  • 10 Cucina A, Borrelli V, Di Carlo A et al.. Thrombin induces production of growth factors from aortic smooth muscle cells.  J Surg Res. 1999;  82 61-66
  • 11 Fager G. Thrombin and proliferation of vascular smooth muscle cells.  Circ Res. 1995;  77 645-650
  • 12 Bruhn H D, Pohl J. Growth regulation of fibroblasts by thrombin, factor XIII and fibronectin.  Klin Wochenschr. 1981;  59 145-146
  • 13 Szaba F M, Smiley S T. Roles for thrombin and fibrin(ogen) in cytokine/chemokine production and macrophage adhesion in vivo.  Blood. 2002;  99 1053-1059
  • 14 Sugama Y, Tiruppathi C, Offakidevi K, Andersen T T, Fenton 2nd J W, Malik A B. Thrombin-induced expression of endothelial P-selectin and intercellular adhesion molecule-1: a mechanism for stabilizing neutrophil adhesion.  J Cell Biol. 1992;  119 935-944
  • 15 Chiang H S, Yang R S, Huang T F. Thrombin enhances the adhesion and migration of human colon adenocarcinoma cells via increased beta 3-integrin expression on the tumour cell surface and their inhibition by the snake venom peptide, rhodostomin.  Br J Cancer. 1996;  73 902-908
  • 16 Radjabi A R, Sawada K, Jagadeeswaran S et al.. Thrombin induces tumor invasion through the induction and association of matrix metalloproteinase-9 and beta1-integrin on the cell surface.  J Biol Chem. 2008;  283 2822-2834
  • 17 Nierodzik M L, Karpatkin S. Thrombin induces tumor growth, metastasis, and angiogenesis: evidence for a thrombin-regulated dormant tumor phenotype.  Cancer Cell. 2006;  10 355-362
  • 18 Nierodzik M L, Klepfish A, Karpatkin S. Role of platelets, thrombin, integrin IIb-IIIa, fibronectin and von Willebrand factor on tumor adhesion in vitro and metastasis in vivo.  Thromb Haemost. 1995;  74 282-290
  • 19 Hu L, Roth J M, Brooks P, Luty J, Karpatkin S. Thrombin up-regulates cathepsin D which enhances angiogenesis, growth, and metastasis.  Cancer Res. 2008;  68 4666-4673
  • 20 Ogiichi T, Hirashima Y, Nakamura S, Endo S, Kurimoto M, Takaku A. Tissue factor and cancer procoagulant expressed by glioma cells participate in their thrombin-mediated proliferation.  J Neurooncol. 2000;  46 1-9
  • 21 Kaufmann R, Junker U, Junker K et al.. The serine proteinase thrombin promotes migration of human renal carcinoma cells by a PKA-dependent mechanism.  Cancer Lett. 2002;  180 183-190
  • 22 Palumbo J S, Talmage K E, Massari J V et al.. Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells.  Blood. 2005;  105 178-185
  • 23 Palumbo J S, Talmage K E, Massari J V et al.. Tumor cell-associated tissue factor and circulating hemostatic factors cooperate to increase metastatic potential through natural killer cell-dependent and-independent mechanisms.  Blood. 2007;  110 133-141
  • 24 Nieswandt B, Hafner M, Echtenacher B, Mannel D N. Lysis of tumor cells by natural killer cells in mice is impeded by platelets.  Cancer Res. 1999;  59 1295-1300
  • 25 Kaufmann R, Junker U, Schilli-Westermann M, Klotzer C, Scheele J, Junker K. Meizothrombin, an intermediate of prothrombin cleavage potently activates renal carcinoma cells by interaction with PAR-type thrombin receptors.  Oncol Rep. 2003;  10 493-496
  • 26 Chiang H S, Yang R S, Lin S W, Huang T F. Tissue factor activity of SW-480 human colon adenocarcinoma cells is modulated by thrombin and protein kinase C activation.  Br J Cancer. 1998;  78 1121-1127
  • 27 Zain J, Huang Y Q, Feng X, Nierodzik M L, Li J J, Karpatkin S. Concentration-dependent dual effect of thrombin on impaired growth/apoptosis or mitogenesis in tumor cells.  Blood. 2000;  95 3133-3138
  • 28 Athale U H, Chan A K. Thromboembolic complications in pediatric hematologic malignancies.  Semin Thromb Hemost. 2007;  33 416-426
  • 29 Johnson M J, Walker I D, Sproule M W, Conkie J. Abnormal coagulation and deep venous thrombosis in patients with advanced cancer.  Clin Lab Haematol. 1999;  21 51-54
  • 30 Lee A Y, Levine M N. Venous thromboembolism and cancer: risks and outcomes.  Circulation. 2003;  107 I17-I21
  • 31 Geerts W H, Heit J A, Clagett G P et al.. Prevention of venous thromboembolism.  Chest. 2001;  119 132S-175S
  • 32 Miller G J, Bauer K A, Howarth D J, Cooper J A, Humphries S E, Rosenberg R D. Increased incidence of neoplasia of the digestive tract in men with persistent activation of the coagulant pathway.  J Thromb Haemost. 2004;  2 2107-2114
  • 33 Sorensen H T, Mellemkjaer L, Steffensen F H, Olsen J H, Nielsen G L. The risk of a diagnosis of cancer after primary deep venous thrombosis or pulmonary embolism.  N Engl J Med. 1998;  338 1169-1173
  • 34 Goldin-Lang P, Tran Q V, Fichtner I et al.. Tissue factor expression pattern in human non-small cell lung cancer tissues indicate increased blood thrombogenicity and tumor metastasis.  Oncol Rep. 2008;  20 123-128
  • 35 Seto S, Onodera H, Kaido T et al.. Tissue factor expression in human colorectal carcinoma: correlation with hepatic metastasis and impact on prognosis.  Cancer. 2000;  88 295-301
  • 36 Shigemori C, Wada H, Matsumoto K, Shiku H, Nakamura S, Suzuki H. Tissue factor expression and metastatic potential of colorectal cancer.  Thromb Haemost. 1998;  80 894-898
  • 37 Ueno T, Toi M, Koike M, Nakamura S, Tominaga T. Tissue factor expression in breast cancer tissues: its correlation with prognosis and plasma concentration.  Br J Cancer. 2000;  83 164-170
  • 38 Poon R T, Lau C P, Ho J W, Yu W C, Fan S T, Wong J. Tissue factor expression correlates with tumor angiogenesis and invasiveness in human hepatocellular carcinoma.  Clin Cancer Res. 2003;  9 5339-5345
  • 39 Schulman S, Lindmarker P. Incidence of cancer after prophylaxis with warfarin against recurrent venous thromboembolism. Duration of Anticoagulation Trial.  N Engl J Med. 2000;  342 1953-1958
  • 40 Taliani M R, Agnelli G, Prandoni P et al.. Incidence of cancer after a first episode of idiopathic venous thromboembolism treated with 3 months or 1 year of oral anticoagulation.  J Thromb Haemost. 2003;  1 1730-1733
  • 41 Zacharski L R, Henderson W G, Rickles F R et al.. Effect of warfarin anticoagulation on survival in carcinoma of the lung, colon, head and neck, and prostate. Final report of VA Cooperative Study #75.  Cancer. 1984;  53 2046-2052
  • 42 Zacharski L R, Henderson W G, Rickles F R et al.. Effect of warfarin on survival in small cell carcinoma of the lung. Veterans Administration Study No. 75.  JAMA. 1981;  245 831-835
  • 43 Chahinian A P, Propert K J, Ware J H et al.. A randomized trial of anticoagulation with warfarin and of alternating chemotherapy in extensive small-cell lung cancer by the Cancer and Leukemia Group B.  J Clin Oncol. 1989;  7 993-1002
  • 44 Maurer L H, Herndon II J E, Hollis D R et al.. Randomized trial of chemotherapy and radiation therapy with or without warfarin for limited-stage small-cell lung cancer: a Cancer and Leukemia Group B study.  J Clin Oncol. 1997;  15 3378-3387
  • 45 Lebeau B, Chastang C, Brechot J M et al.. Subcutaneous heparin treatment increases survival in small cell lung cancer. “Petites Cellules” Group.  Cancer. 1994;  74 38-45
  • 46 Lee A Y, Levine M N, Baker R I et al.. Low-molecular-weight heparin versus a coumarin for the prevention of recurrent venous thromboembolism in patients with cancer.  N Engl J Med. 2003;  349 146-153
  • 47 Lee A Y, Julian J, Levine M et al.. Impact of dalteparin low-molecular-weight heparin (LMWH) on survival: results of a randomized trial in cancer patients with venous thromboembolism (VTE) [abstract].  Proc Am Soc Clin Oncol. 2003;  22 846
  • 48 Moyano A J, Gonzalez-Martin A, Fernandez E et al.. Weekly docetaxel (D) and short course of estramustine phosphate (EMP) with subcutaneous heparin low molecular weight in hormone resistant prostate cancer (HRPR): an active regimen without thrombosis related events [abstract].  Proc Am Soc Clin Oncol. 2003;  22 1751
  • 49 Icli F, Akbulut H, Utkan G et al.. Low molecular weight heparin (LMWH) increases the efficacy of cisplatinum plus gemcitabine combination in advanced pancreatic cancer [abstract].  Proc Am Soc Clin Oncol. 2003;  22 1149
  • 50 Kakkar A K, Levine M N, Kadziola Z et al.. Low molecular weight heparin, therapy with dalteparin, and survival in advanced cancer: the fragmin advanced malignancy outcome study (FAMOUS).  J Clin Oncol. 2004;  22 1944-1948
  • 51 Rudroff C, Striegler S, Schilli M, Scheele J. Thrombin enhances adhesion in pancreatic cancer in vitro through the activation of the thrombin receptor PAR 1.  Eur J Surg Oncol. 2001;  27 472-476
  • 52 Okamoto T, Nishibori M, Sawada K et al.. The effects of stimulating protease-activated receptor-1 and -2 in A172 human glioblastoma.  J Neural Transm. 2001;  108 125-140
  • 53 Liu Y, Gilcrease M Z, Henderson Y, Yuan X H, Clayman G L, Chen Z. Expression of protease-activated receptor 1 in oral squamous cell carcinoma.  Cancer Lett. 2001;  169 173-180
  • 54 Kaufmann R, Patt S, Zieger M et al.. The two-receptor system PAR-1/PAR-4 mediates alpha-thrombin-induced [Ca(2+)](i) mobilization in human astrocytoma cells.  J Cancer Res Clin Oncol. 2000;  126 91-94
  • 55 Kaufmann R, Patt S, Kraft R et al.. PAR 1-type thrombin receptors are involved in thrombin-induced calcium signaling in human meningioma cells.  J Neurooncol. 1999;  42 131-136
  • 56 D'Andrea M R, Derian C K, Santulli R J, Andrade-Gordon P. Differential expression of protease-activated receptors-1 and -2 in stromal fibroblasts of normal, benign, and malignant human tissues.  Am J Pathol. 2001;  158 2031-2041
  • 57 Bromberg M E, Bailly M A, Konigsberg W H. Role of protease-activated receptor 1 in tumor metastasis promoted by tissue factor.  Thromb Haemost. 2001;  86 1210-1214
  • 58 Kaufmann R, Rahn S, Pollrich K et al.. Thrombin-mediated hepatocellular carcinoma cell migration: cooperative action via proteinase-activated receptors 1 and 4.  J Cell Physiol. 2007;  211 699-707
  • 59 Goerge T, Barg A, Schnaeker E M et al.. Tumor-derived matrix metalloproteinase-1 targets endothelial proteinase-activated receptor 1 promoting endothelial cell activation.  Cancer Res. 2006;  66 7766-7774
  • 60 Caunt M, Hu L, Tang T, Brooks P C, Ibrahim S, Karpatkin S. Growth-regulated oncogene is pivotal in thrombin-induced angiogenesis.  Cancer Res. 2006;  66 4125-4132
  • 61 Pei D. Matrix metalloproteinases target protease-activated receptors on the tumor cell surface.  Cancer Cell. 2005;  7 207-208

Kristen M SnyderM.D. 

Divisions of Pediatric and Adult Hematology-Oncology, Lombardi Comprehensive Cancer Center

Georgetown University Medical Center, 3800 Reservoir Rd, NW, Washington, DC 2007

Email: KMS121@gunet.georgetown.edu