Semin Reprod Med 2009; 27(2): 191-201
DOI: 10.1055/s-0029-1202309
© Thieme Medical Publishers

ICSI: Where We Have Been and Where We Are Going

Gianpiero D. Palermo1 , Queenie V. Neri1 , Takumi Takeuchi1 , Zev Rosenwaks1
  • 1The Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, New York
Further Information

Publication History

Publication Date:
26 February 2009 (online)

ABSTRACT

Notwithstanding the broad success of in vitro fertilization (IVF), a failure to achieve fertilization still plagues a substantial group of patients, with sperm abnormalities the main culprit. In the 1980s, several micromanipulation procedures were adopted from animal husbandry to facilitate gamete interaction, and this resulted in the development of intracytoplasmic sperm injection (ICSI), a procedure through which an oocyte can be fertilized independently of the morphology and/or motility of the single spermatozoon injected. The procedure was first used in cases of fertilization failure after standard IVF or when an inadequate number of sperm cells were available. The consistency of fertilization independent of the functional quality of the spermatozoon has extended the application of ICSI to immature spermatozoa retrieved surgically from the epididymis and testis. Moreover, the need to denude the oocyte has allowed assessment of the nuclear maturity of the oocyte. ICSI is also preferred in conjunction with preimplantation genetic diagnosis and recently has been used to treat HIV discordant couples, where there is a pressing need to minimize the exposure of the oocyte to a large number of spermatozoa. For all ages and with all the different sperm types used, fertilization after ICSI is at ~70 to 80% and it ensures a clinical pregnancy rate of up to 45%. These results have made ICSI a procedure comparable in popularity with IVF and have minimized the need for couples suffering from all forms of male infertility to resort to adoption or the use of donor sperm.

REFERENCES

  • 1 Gordon J W, Talansky B E. Assisted fertilization by zona drilling: a mouse model for correction of oligospermia.  J Exp Zool. 1986;  239 347-354
  • 2 Tsunoda Y, Yasui T, Nakamura K. Effect of cutting the zona pellucida on the pronuclear transplantation in the mouse.  J Exp Zool. 1986;  240 119-125
  • 3 Odawara Y, Lopata A. Zona cracking: a new technique for assisted fertilization. Proceedings of the Australian Fertility Society Meeting Sidney, Australia; 1987: 073
  • 4 Gordon J W, Grunfeld J, Garrisi G J, Talansky B E, Richards C, Laufer N. Fertilization of human oocytes by sperm from infertile males after zona pellucida drilling.  Fertil Steril. 1988;  50 68-73
  • 5 Cohen J, Malter H, Fehilly C et al.. Implantation of embryos after partial opening of oocyte zona pellucida to facilitate sperm penetration.  Lancet. 1988;  2 162
  • 6 Feichtinger W, Strohmer H, Fuhrberg P et al.. Photoablation of oocyte zona pellucida by erbium-YAG laser for in-vitro fertilization in severe male infertility.  Lancet. 1992;  339 811
  • 7 Antinori S, Versaci C, Fuhrberg P et al.. Seventeen live births after the use of an urbium-yttrium-aluminium-garnet laser in the treatment of male factor infertility.  Hum Reprod. 1994;  9 1891-1896
  • 8 Laws-King A, Trounson A, Sathananthan H et al.. Fertilization of human oocytes by microinjection of a single spermatozoon under the zona pellucida.  Fertil Steril. 1987;  48 637-642
  • 9 Palermo G, Van Steirteghem A C. Enhancement of acrosome reaction and subzonal insemination of a single spermatozoon in mouse eggs.  Mol Reprod Dev. 1991;  30 339-345
  • 10 Palermo G, Joris H, Devroey P et al.. Induction of acrosome reaction in human spermatozoa used for subzonal insemination.  Hum Reprod. 1992a;  7 248-254
  • 11 Hiramoto Y. Microinjection of the live spermatozoa into sea urchin eggs.  Exp Cell Res. 1962;  27 416-426
  • 12 Lin T P. Microinjection of mouse eggs.  Science. 1966;  151 333-337
  • 13 Uehara T, Yanagimachi R. Microsurgical injection of spermatozoa into hamster eggs with subsequent transformation of sperm nuclei into male pronuclei.  Biol Reprod. 1976;  15 467-470
  • 14 Markert C L. Fertilization of mammalian eggs by sperm injection.  J Exp Zool. 1983;  228 195-201
  • 15 Thadani V M. A Study of Oocyte Interactions Using in Vitro Fertilization and Sperm Microinjection [Ph.D. thesis]. New Haven, CT; Yale University 1981
  • 16 Perreault S D, Zirkin B R. Sperm nuclear decondensation in mammals: role of sperm associated proteinase in-vivo.  J Exp Zool. 1982;  224 253-257
  • 17 Hoshi K, Yanagida K, Sato A. Pretreatment of hamster oocytes with Ca2 +  ionophore to facilitate fertilization by ooplasmic microinjection.  Hum Reprod. 1992;  7 871-875
  • 18 Younis A I, Keefer C L, Brackett B G. Fertilization of bovine oocytes by sperm injection.  Theriogenology. 1989;  31 276
  • 19 Iritani A. Current status of biotechnological studies in mammalian reproduction.  Fertil Steril. 1988;  50 543-551
  • 20 Goto K, Kinoshita A, Takuma Y et al.. Fertilization by sperm injection in cattle.  Theriogenology. 1990;  33 238
  • 21 Lanzendorf S E, Maloney M K, Veeck L L et al.. A preclinical evaluation of pronuclear formation by microinjection of human spermatozoa into human oocytes.  Fertil Steril. 1988;  49 835-842
  • 22 Palermo G, Joris H, Devroey P et al.. Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte.  Lancet. 1992;  340 17-18
  • 23 Palermo G D, Cohen J, Rosenwaks Z. Intracytoplasmic sperm injection: a powerful tool to overcome fertilization failure.  Fertil Steril. 1996;  65 899-908
  • 24 Ponjaert-Kristoffersen I, Tjus T, Nekkebroeck J et al.. Collaborative study of Brussels, Goteborg and New York. Psychological follow-up study of 5-year-old ICSI children.  Hum Reprod. 2004;  19 2791-2797
  • 25 Palermo G D, Neri Q V, Takeuchi T et al.. Genetic and epigenetic characteristics of ICSI children.  Reprod Biomed Online. 2008;  17 820-833
  • 26 Palermo G D, Cohen J, Alikani M et al.. Intracytoplasmic sperm injection: a novel treatment for all forms of male factor infertility.  Fertil Steril. 1995;  63 1231-1240
  • 27 Neri Q V, Takeuchi T, Palermo G D. An update of assisted reproductive technologies results in the United States.  Ann N Y Acad Sci. 2008;  1127 41-48
  • 28 Yovich J L, Stanger J D. The limitations of in-vitro fertilization from male with severe oligospermia and abnormal sperm morphology.  J In Vitro Fert Embryo Transf. 1984;  1 172-179
  • 29 Chia C M, Sathananthan H, Ng S C et al.. Ultrastructural investigation of failed in-vitro fertilisation in idiopathic subfertility. In: Proceedings of the 18th Singapore-Malaysia Congress of Medicine, Singapore Singapore; Academy of Medicine 1984: 52
  • 30 De Felici M, Siracusa G. “Spontaneous” hardening of the zona pellucida of mouse oocytes during in-vitro culture.  Gamete Research. 1982;  6 107-113
  • 31 Bedford J M, Kim H H. Sperm/egg binding patterns and oocyte cytology in retrospective analysis of fertilization failure in vitro.  Hum Reprod. 1993;  8 453-463
  • 32 Van Blerkom J, Henry G. Oocyte dysmorphism and aneuploidy in meiotically mature human oocytes after ovarian stimulation.  Hum Reprod. 1992;  7 379-390
  • 33 Lalonde L, Langalis J, Antaki P et al.. Male infertility associated with round-headed acrosomeless spermatozoa.  Fertil Steril. 1988;  49 316-321
  • 34 Uehara T, Yanagimachi R. Behavior of nuclei of testicular, caput and cauda epididymal spermatozoa injected into hamster eggs.  Biol Reprod. 1977;  16 315-321
  • 35 Temple-Smith P D, Southwick G J, Yates C A, Trounson A O, de Kretser D M. Human pregnancy by in-vitro fertilization (IVF) using sperm aspirated from the epididymis.  J In Vitro Fert Embryo Transf. 1985;  2 119-122
  • 36 Silber S J, Ord T, Borrero C, Balmaceda J, Asch R. New treatment for infertility due to congenital absence of the vas deferens.  Lancet. 1987;  2 850-851
  • 37 Silber S J, Devroey P, Nagy Z et al.. ICSI with testicular and epididymal sperm. In: Proceedings of the ESHRE Workshop Brussels, Belgium; 1994: 36-41
  • 38 Tournaye H, Devroey P, Liu J et al.. Microsurgical epididymal sperm aspiration and intracytoplasmic sperm injection: a new effective approach to infertility as a result of cogenital bilateral absence of vas deferens.  Fertil Steril. 1994;  61 1045-1051
  • 39 Craft I, Bennett V, Nicholson N. Fertilising ability of testicular spermatozoa.  Lancet. 1993;  342 864
  • 40 Schoysman R, Vanderzwalmen P, Nijs M et al.. Pregnancy after fertilization with human testicular spermatozoa.  Lancet. 1993;  342 1237
  • 41 Fishel S, Green S, Bishop M et al.. Pregnancy after intracytoplasmic injection of spermatid.  Lancet. 1995;  345 1641-1642
  • 42 Tesarik J, Mendoza C, Testart J. Viable embryos from injection of round spermatids into oocytes.  N Engl J Med. 1995;  333 525
  • 43 Lanzendorf S, Maloney M, Ackerman S et al.. Fertilizing potential of acrosome-defective sperm following microsurgical injection into eggs.  Gamete Res. 1988b;  19 329-337
  • 44 Lundin K, Sjögren A, Nilsson L et al.. Fertilization and pregnancy after intracytoplasmic microinjection of acrosomeless spermatozoa.  Fertil Steril. 1994;  62 1266-1267
  • 45 Liu J, Nagy Z, Joris H et al.. Successful fertilization and establishment of pregnancies after intracytoplasmic sperm injection in patients with globozoospermia.  Hum Reprod. 1995a;  10 626-629
  • 46 Heindryckx B, Van der Elst J, De Sutter P et al.. Treatment option for sperm- or oocyte-related fertilization failure: assisted oocyte activation following diagnostic heterologous ICSI.  Hum Reprod. 2005;  20 2237-2241
  • 47 Mahadevan M M, Trounson A O. The influence of seminal characteristics on the success rate of human in vitro fertilization.  Fertil Steril. 1984;  42 400-405
  • 48 Jeulin C, Feneux D, Serres C et al.. Sperm factors related to failure of human in-vitro fertilization.  J Reprod Fertil. 1986;  76 735-744
  • 49 Kruger T F, Menkveld R, Stander F SH et al.. Sperm morphologic features as a prognostic factor in in vitro fertilization.  Fertil Steril. 1986;  46 1118-1123
  • 50 Liu D Y, Baker H W. Morphology of spermatozoa bound to the zona pellucida of human oocytes that failed to fertilize in vitro.  J Reprod Fertil. 1992a;  94 71-84
  • 51 Liu D Y, Baker H W. Tests of human sperm function and fertilization in vitro.  Fertil Steril. 1992b;  58 465-483
  • 52 Liu D Y, Baker H W. Sperm nuclear chromatin normality: relationship with sperm morphology, sperm-zona pellucida binding, and fertilization rates in vitro.  Fertil Steril. 1992c;  58 1178-1184
  • 53 Franken D R, Acosta A A, Kruger T F et al.. The hemizona assay: its role in identifying male factor infertility in assisted reproduction.  Fertil Steril. 1993;  59 1075-1080
  • 54 Oehninger S, Mahony M, Ozgür K et al.. Clinical significance of human sperm-zona pellucida binding.  Fertil Steril. 1997;  67 1121-1127
  • 55 Van Blerkom J, Davis P W, Merriam J. A retrospective analysis of unfertilized and presumed parthenogentically activated human oocytes demonstrates a high frequency of sperm penetration.  Hum Reprod. 1994;  9 2381-2388
  • 56 Palermo G D, Colombero L T, Hariprashad J J, Schlegel P N, Rosenwaks Z. Chromosome analysis of epididymal and testicular sperm in azoospermic patients undergoing ICSI.  Hum Reprod. 2002;  17 570-575
  • 57 Orief Y, Dafopoulos K, Al-Hassani S. Should ICSI be used in non-male factor infertility?.  Reprod Biomed Online. 2004;  9 348-356
  • 58 Renwick P J, Lewis C M, Abbs S et al.. Determination of the genetic status of cleavage-stage human embryos by microsatellite marker analysis following multiple displacement amplification.  Prenat Diagn. 2007;  27 206-215
  • 59 Spits C, De Rycke M, Verpoest W et al.. Preimplantation genetic diagnosis for Marfan syndrome.  Fertil Steril. 2006;  86 310-320
  • 60 Braude P, Pickering S, Flinter F et al.. Preimalplantation genetic diagnosis.  Nat Rev Genet. 2002;  3 941-953
  • 61 Sermon K. Current concepts in preimplantation genetic diagnosis (PGD): a molecular biologist's view.  Hum Reprod Update. 2002;  8 11-20
  • 62 Sermon K, Van Steirteghem A, Liebaers I. Preimplantation genetic diagnosis.  Lancet. 2004;  363 1633-1641
  • 63 Garrido N, Meseguer M, Simon C et al.. Assisted reproduction in HIV and HCV infected men of serodiscordant couples.  Arch Androl. 2004;  50 105-111
  • 64 de Vincezi I. A longitudinal study of human immunodeficiency virus transmission by heterosexual partners.  N Engl J Med. 1994;  331 341-346
  • 65 Pickering S J, Muggleton-Harris A L. Reliability and accuracy of polymerase chain reaction amplification of two unique target sequences from biopsies of cleavage-stage and blastocyst-stage human embryos.  Hum Reprod. 1995;  10 1021-1029
  • 66 Bujan L, Daudin M, Pasquier C. Choice of ART programme for serodiscordant couples with an HIV infected male partner.  Hum Reprod. 2006;  21 1332-1333
  • 67 Sauer M V, Chang P. Establishing a clinical program for human immunodeficiency virus 1-seropositive med to father seronegative children by means of in vitro fertilization with intracytoplasmic sperm injection.  Am J Obstet Gynecol. 2002;  186 627-633
  • 68 Mencaglia L, Falcone P, Lentini G M et al.. ICSI for treatment of human immunodeficiency virus and hepatits C virus-serodiscordant couples with infected male partner.  Hum Reprod. 2005;  20 2242-2246
  • 69 Pena J E, Thornton II M H, Sauer M V. Assessing the clinical utility of in vitro fertilization with intracytoplasmic sperm injection in human immunodeficiency virus type 1 serodiscordant couples: report of 113 consecutive cycles.  Fertil Steril. 2003;  80 356-362
  • 70 van Leeuwen E, Prins J M, Jurriaans S et al.. Reproduction and fertility in human immunodeficiency virus type-1 infection.  Hum Reprod Update. 2007;  13 197-206
  • 71 Palermo G D, Schlegel P N, Hariprashad J J et al.. Fertilization and pregnancy outcome with intracytoplasmic sperm injection for azoospermic men.  Hum Reprod. 1999;  14 741-748
  • 72 Schlegel P N. Male infertility: evaluation and sperm retrieval.  Clin Obstet Gynecol. 2006;  49 55-72
  • 73 Sousa M, Barros A, Takahashi K et al.. Clinical efficacy of spermatid conception: analysis using a new spermatid classification scheme.  Hum Reprod. 1999;  14 1279-1286
  • 74 Willadsen S, Munne S, Schimmel T et al.. Genetically identical analyzable sperm-derived nuclei produced in enucleated mammalian eggs.  Fertil Steril. 2002;  78(Suppl 1) S58
  • 75 Kuznyetsov V, Kuznyetsova I, Chmura M et al.. Duplication of the sperm genome by human androgenetic embryo production: towards testing the paternal genome prior to fertilization.  Reprod Biomed Online. 2007;  14 504-514
  • 76 Takeuchi T, Neri Q V, Cheng M et al.. Successful cloning of the male genome.  Fertil Steril. 2007;  88(Suppl 1) S75
  • 77 Rohwedel J, Guan K, Wobus A M. Induction of cellular differentiation by retinoic acid in vitro.  Cells Tissues Organs. 1999;  165 190-202
  • 78 Hubner K, Fuhrmann G, Christenson L K et al.. Derivation of oocytes from mouse embryonic stem cells.  Science. 2003;  300 1251-1256
  • 79 Lacham-Kaplan O, Chy H, Trounson A. Testicular cell conditioned medium supports differentiation of embryonic stem cells into ovarian structures containing oocytes.  Stem Cells. 2006;  24 266-273
  • 80 Clark A T, Bodnar M S, Fox M et al.. Spontaneous differentiation of germ cells from human embryonic stem cells in vitro.  Hum Mol Genet. 2004;  13 727-739
  • 81 Geijsen N, Horoschak M, Kim K et al.. Derivation of embryonic germ cells and male gametes from embryonic stem cells.  Nature. 2004;  427 148-154
  • 82 Nayernia K, Nolte J, Michelmann W et al.. In vitro-differentiated embryonic stem cells give rise to male gametes that can generate offspring mice.  Dev Cell. 2006;  11 125-132
  • 83 Silva C, Wood J R, Salvador L et al.. Expression profile of male germ cell-associated genes in mouse embryonic stem cell cultures treated with all-trans retinoic acid and testosterone.  Mol Reprod Dev. 2008; April 18 (Epub ahead of print); 
  • 84 Neri Q V, Tanaka N, Takeuchi T et al.. Propagation and maturation of male gonocytes in vitro.  Fertil Steril. 2006;  86(Suppl 2) s14
  • 85 Neri Q V, Tanaka N, Takeuchi T et al.. Differentiation of embryonic stem cells into male germ cells.  Fertil Steril. 2006;  86(Suppl 2) s107
  • 86 Feliciano M, Neri Q V, Seriola Petit A et al.. In vitro differentiation of embryonic stem cells into male germ cells.  Hum Reprod. 2007;  22(Suppl 1) i68
  • 87 Tanaka N, Neri Q V, Takeuchi T et al.. Selecting and propagating spermatogonial stem cells in a serum-free medium.  Hum Reprod. 2006;  21(Suppl 1) i208
  • 88 Kubota H, Avarbok M R, Brinster R L. Growth factors essential for self-renewal and expansion of mouse spermatogonial stem cells.  Proc Natl Acad Sci U S A. 2004;  101 16489-16494
  • 89 Neri Q V, Seriola A, Takeuchi T et al.. Correlation of ESC derived PGCs to their counterpart in 6.5dpc embryos.  Fertil Steril. 2007;  88(Suppl 1) S399-S400
  • 90 Kerkis A, Fonseca S A, Serafim R C et al.. In vitro differentiation of male mouse embryonic stem cells into both presumptive sperm cells and oocytes.  Cloning Stem Cells. 2007;  9 535-548
  • 91 ABC News. Science. Baby sperm made from bone marrow. 2007 Available at: http://www.abc.net.au/science/articles/2007/04/16/1898103.htm?site=science&topic=health Accessed April 16, 2007
  • 92 NewScientist .Are male eggs and female sperm on the horizon?. Available at: http://www.newscientist.com/channel/sex/mg19726414.000-are-male-eggs-and-female-sperm-on-the-horizon.html Accessed February 2, 2008

Gianpiero D PalermoM.D. Ph.D. 

The Center for Reproductive Medicine and Infertility, Weill Cornell Medical College

1305 York Avenue, Suite 720, New York, NY 10021

Email: gdpalerm@med.cornell.edu