Horm Metab Res 2009; 41(7): 511-515
DOI: 10.1055/s-0029-1202348
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Fatty Acid Oxidation is Decreased in the Liver of Ovariectomized Rats

A. Paquette 1 , N. A. Chapados 1 , R. Bergeron 1 , J.-M. Lavoie 1
  • 1Département de kinésiologie, Université de Montréal, Montréal, Québec, Canada
Further Information

Publication History

received 05.08.2008

accepted 07.01.2009

Publication Date:
24 February 2009 (online)

Abstract

Estrogen-deficient states are associated with hepatic steatosis. Based on previous findings obtained at the molecular and enzymatic levels, it has been suggested that estradiol exerts its lipid-lowering effects in liver through partitioning of triacylglycerols into oxidative pathways. However, information on relevant physiological response was lacking. Therefore, the purpose of the present study was to assess fatty acid oxidation rate in the liver of intact and ovariectomized rats. Tritiated water released from liver slices incubated with 9,10-[3H]palmitate was measured as a reflection of in vivo fatty acid metabolism. Fatty acid oxidation rate was lowered by 34% (p<0.05), associated with 114% higher (p<0.01) hepatic triacylgylcerol content in the liver of ovariectomized as compared to intact rats. Estrogen replacement prevented all of these changes. Fatty liver has been linked with hepatic leptin resistance in obese male rats. Since leptin stimulates fatty acid oxidation in liver, we hypothesized that increased liver triacylglycerol content and decreased fatty acid oxidation might be associated with leptin resistance in ovariectomized rats. To this end, acute leptin delivery was performed. The 120-min intravenous leptin infusion increases fatty acid oxidation by 23% in the liver of ovariectomized rats, which was coupled with 24% lower hepatic triacylglycerol content. We conclude that fatty acid oxidation is decreased in the liver of ovariectomized rats, which is likely to contribute to hepatic steatosis development. Furthermore, our results suggest that leptin sensitivity is not completely lost in the liver of rats ovariectomized for 5 weeks.

References

  • 1 Qureshi K, Abrams GA. Metabolic liver disease of obesity and role of adipose tissue in the pathogenesis of nonalcoholic fatty liver disease.  World J Gastroenterol. 2007;  13 3540-3553
  • 2 Nguyen P, Leray V, Diez M, Serisier S, Le Bloc’h J, Siliart B, Dumon H. Liver lipid metabolism.  J Anim Physiol Anim Nutr. 2008;  92 272-283
  • 3 Völzke H, Schwarz S, Baumeister SE, Wallaschofski H, Schwahn C, Grabe HJ, Kohlmann T, John U, Dören M. Menopausal status and hepatic steatosis in a general female population.  Gut. 2007;  56 594-595
  • 4 Hewitt KN, Pratis K, Jones MEE, Simpson ER. Estrogen replacement reverses the hepatic steatosis phenotype in the male aromatase knockout mouse.  Endocrinology. 2004;  145 1842-1848
  • 5 Lemieux C, Phaneuf D, Labrie F, Giguère V, Richard D, Deshaies Y. Estrogen receptor α-mediated adiposity-lowering and hypocholesterolemic actions of the selective estrogen receptor modulator acolbifen.  Int J Obes (Lond). 2005;  29 1236-1244
  • 6 Deshaies Y, Dagnault A, Lalonde J, Richard D. Interaction of corticosterone and gonadal steroids on lipid deposition in the female rat.  Am J Physiol Endocrinol Metab. 1997;  273 E355-E362
  • 7 Paquette A, Shinoda M, Rabasa-Lhoret R, Prud’homme D, Lavoie JM. Time course of liver lipid infiltration in ovariectomized rats: impact of a high-fat diet.  Maturitas. 2007;  58 182-190
  • 8 D’Eon TM, Souza SC, Aronovitz M, Obin MS, Fried SK, Greenberg AS. Estrogen regulation of adiposity and fuel partitioning. Evidence of genomic and non-genomic regulation of lipogenic and oxidative pathways.  J Biol Chem. 2005;  280 35983-35991
  • 9 Paquette A, Wang D, Jankowski M, Gutkowska J, Lavoie JM. Effects of ovariectomy on PPARα, SREBP-1c, and SCD-1 gene expression in the rat liver.  Menopause. 2008;  15 1169-1175
  • 10 Desvergne B, Wahli W. Peroxisome proliferator-activated receptors: Nuclear control of metabolism.  Endocr Rev. 1999;  20 649-688
  • 11 Campbell SE, Mehan KA, Tunstall RJ, Febbraio MA, Cameron-Smith D. 17β-estradiol upregulates the expression of peroxisome proliferator-activated receptor α and lipid oxidative genes in skeletal muscle.  J Mol Endocrinol. 2003;  31 37-45
  • 12 Campbell SE, Febbraio MA. Effect of ovarian hormones on mitochondrial enzyme activity in the fat oxidation pathway of skeletal muscle.  Am J Endocrinol Metab. 2001;  281 E803-E808
  • 13 Toda K, Takeda K, Akira S, Saibara T, Okada T, Onishi S, Shizuta Y. Alternations in hepatic expression of fatty-acid metabolizing enzymes in ArKO mice and their reversal by the treatment with 17 β-estradiol or a peroxisome proliferator.  J Steroid Biochem Mol Biol. 2001;  79 11-17
  • 14 Huang W, Dedousis N, Bandi A, Lopaschuk GD, O’Doherty RM. Liver triglyceride secretion and lipid oxidative metabolism are rapidly altered by leptin in vivo.  Endocrinology. 2006;  147 1480-1487
  • 15 Huang W, Dedousis N, Bhatt BA, O’Doherty M. Impaired activation of phosphatidylinositol 3-kinase by leptin is a novel mechanism of hepatic leptin resistance in diet-induced obesity.  J Biol Chem. 2004;  279 21695-21700
  • 16 Fishman S, Muzumdar RH, Atzmon G, Ma X, Yang X, Einstein FH, Barzilai N. Resistance to leptin action is the major determinant of hepatic triglyceride accumulation in vivo.  FASEB J. 2007;  21 53-60
  • 17 Shimabukuro M, Koyama K, Chen G, Wang MY, Trieu F, Lee Y, Newgard CB, Unger RH. Direct antidiabetic effect of leptin through triglyceride depletion of tissues.  Proc Natl Acad Sci USA. 1997;  94 4637-4641
  • 18 Kimura M, Irahara M, Yasui T, Saito S, Tezuka M, Yamano S, Kamada M, Aono T. The obesity in bilateral ovariectomized rats is related to a decrease in the expression of leptin receptors in the brain.  Biochem Biophys Res Commun. 2002;  290 1349-1353
  • 19 Meli R, Pacilio M, Raso GM, Esposito E, Coppola A, Nasti A, Carlo C Di, Nappi C, Carlo R Di. Estrogen and raloxifene modulate leptin and its receptor in hypothalamus and adipose tissue from ovariectomized rats.  Endocrinology. 2004;  145 3115-3121
  • 20 Ainslie DA, Morris MJ, Wittert G, Turnbull H, Proietto J, Thorburn AW. Estrogen deficiency causes central leptin insensitivity and increased hypothalamic neuropeptide Y.  Int J Obes Relat Metab Disord. 2001;  25 1680-1688
  • 21 Robertson MC, Owens RE, Klindt J, Friesen HG. Ovariectomy leads to a rapid increase in rat placental lactogen secretion.  Endocrinology. 1984;  114 1805-1811
  • 22 El-Mas MM, Abdel-Rahman AA. Effects of long-term ovariectomy and estrogen replacement on clonidine-evoked reductions in blood pressure and hemodynamic variability.  J Cardiovasc Pharmacol. 2004;  43 607-615
  • 23 Bonjorn VM, Latour MG, Bélanger P, Lavoie JM. Influence of prior exercise and liver glycogen content on the sensitivity of the liver to glucagon.  J Appl Physiol. 2002;  92 188-194
  • 24 Ibrahimi A, Bonen A, Blinn WD, Hajri T, Li X, Zhong K, Cameron R, Abumrad NA. Muscle-specific overexpression of FAT/CD36 enhances fatty acid oxidation by contracting muscle, reduces plasma triglycerides and fatty acids, and increases plasma glucose and insulin.  J Biol Chem. 1999;  274 26761-26766
  • 25 Louet JF, LeMay C, Mauvais-Jarvis F. Antidiabetic actions of estrogen: insight from human and genetic mouse models.  Curr Atheroscler Rep. 2004;  6 180-185
  • 26 Liu ML, Xu X, Rang WQ, Li YJ, Song HP. Influence of ovariectomy and 17 β-estradiol treatment on insulin sensitivity, lipid metabolism and post-ischemic cardiac function.  Int J Cardiol. 2004;  97 485-493
  • 27 Tanaka M, Nakaya S, Kumai T, Watanabe M, Tateishi T, Shimizu H, Kobayashi S. Effects of estrogen on serum leptin levels and leptin mRNA expression in adipose tissue in rats.  Horm Res. 2001;  56 98-104
  • 28 Kim S, Shin HJ, Kim SY, Kim JH, Lee YS, Kim DH, Lee MO. Genistein enhances expression of genes involved in fatty acid catabolism through activation of PPARalpha.  Mol Cell Endocrinol. 2004;  31 51-58
  • 29 Clegg DJ, Brown LM, Woods SC, Benoit SC. Gonadal hormones determine sensitivity to central leptin and insulin.  Diabetes. 2006;  55 978-987
  • 30 Unger RH. Longevity, lipotoxicity and leptin: the adipocyte defense against feasting and famine.  Biochimie. 2005;  87 57-64
  • 31 Mystkowski P, Schwartz MW. Gonadal steroids and energy homeostasis in the leptin era.  Nutrition. 2000;  16 937-946
  • 32 Gao Q, Horvath TL. Cross-talk between estrogen and leptin signaling in the hypothalamus.  Am J Physiol Endocrinol Metab. 2008;  294 E817-E826

Correspondence

A. Paquette

Département de kinésiologie

Université de Montréal

C.P. 6128, Succ. centre-ville

Montréal (Québec)

Canada H3C 3J7

Phone: +1/514/343 61 11 (4867)

Fax: +1/514/343 21 81

Email: amelie.paquette@umontreal.ca