References and Notes
<A NAME="RD00210ST-1A">1a</A>
Bertozzi CR.
Cook DR.
Kobertz WR.
Gonzalez-Scarano F.
Bednarski MD.
J.
Am. Chem. Soc.
1992,
114:
10639
<A NAME="RD00210ST-1B">1b</A>
Wei A.
Boy KM.
Kishi Y.
J.
Am. Chem. Soc.
1995,
117:
9432
<A NAME="RD00210ST-1C">1c</A>
Sutherlin DP.
Stark TM.
Hughes R.
Armstrong RW.
J.
Org. Chem.
1996,
61:
8350
<A NAME="RD00210ST-2A">2a</A>
Postema MHD.
Tetrahedron
1992,
48:
8545
<A NAME="RD00210ST-2B">2b</A>
Levy D.
Tang C.
The Chemistry
of C-Glycosides
Pergamon;
Oxford:
1995.
<A NAME="RD00210ST-2C">2c</A>
Nicotra F.
Topics
Curr. Chem.
1997,
187:
55
<A NAME="RD00210ST-2D">2d</A>
Togo H.
He W.
Waki Y.
Yokoyama M.
Synlett
1998,
700
<A NAME="RD00210ST-2E">2e</A>
Skrydstrup T.
Vauzeilles B.
Beau J.-M. In
Carbohydrates in Chemistry and Biology. The
Chemistry of Saccharides
Vol. 1:
Ernst B.
Hart GW.
Sinaÿ P.
Wiley-VCH;
New
York:
2000.
Chap. 20.
p.495-530
<A NAME="RD00210ST-3A">3a</A>
San Martin R.
Tavassoli B.
Walsh KE.
Walter
DS.
Gallagher T.
Org. Lett.
2000,
2:
4051
<A NAME="RD00210ST-3B">3b</A>
Grant L.
Liu Y.
Walsh KE.
Walter DS.
Gallagher T.
Org.
Lett.
2002,
4:
4623
<A NAME="RD00210ST-3C">3c</A>
Liu Y.
Gallagher T.
Org. Lett.
2004,
6:
2445
<A NAME="RD00210ST-4A">4a</A>
Czernecki S.
Randriamandimby D.
Tetrahedron
Lett.
1993,
34:
7915
<A NAME="RD00210ST-4B">4b</A>
Czernecki S.
Ayadi E.
Randriamandimby D.
J.
Chem. Soc., Chem. Commun.
1994,
35
<A NAME="RD00210ST-4C">4c</A>
Czernecki S.
Ayadi E.
Randriamandimby D.
J.
Org. Chem.
1994,
59:
8256
<A NAME="RD00210ST-4D">4d</A>
Santoyo-Gonzalez F.
Calvo-Flores FG.
Garcia-Mendoza P.
Hernandez-Mateo F.
Isac-Garcia J.
Robles-Diaz R.
J.
Org. Chem.
1993,
58:
6122
<A NAME="RD00210ST-5">5</A>
Using C1-metalated endo-glycals
we have prepared a series of C1-substituted alkyl and aryl glycals
(i.e., 1 R = Alk,
Ar) and evaluated these as substrates for azidoselenation. Even under
forcing conditions, no azidoselenation was observed and this is
attributed to the known (and facile) reversible nature of the azidoselenation
process. We assume that trapping with Ph2Se2 of
the intermediate (a tertiary or benzylic anomeric radical) resulting
from initial N3˙addition is slow and expulsion
of N3˙(and its subsequent decompo-sition) is
too efficient. When the C1 substituent
carried a pendent alkenyl residue (e.g., allyl), only addition to
this less electron-rich alkene was observed (Gallagher, T.; Wang,
J.-W. unpublished work).
<A NAME="RD00210ST-6A">6a</A>
Petasis NA.
Bzowej EI.
J. Am. Chem. Soc.
1990,
112:
6392
<A NAME="RD00210ST-6B">6b</A>
Csuk R.
Glanzer BI.
Tetrahedron
1991,
47:
1655
<A NAME="RD00210ST-7">7</A>
Cook MJ.
Fleming DW.
Gallagher T.
Tetrahedron Lett.
2005,
46:
297
<A NAME="RD00210ST-8">8</A>
Data for
exo
-Glycals
Conventional
carbohydrate numbering (cf. sialic acids) is used.
Compound 8b: ¹H NMR (400 MHz,
CDCl3): δ = 1.13, 1.20, 1.23, 1.28 [36
H, 4 × s, 4 × COC(CH3)3],
3.99-4.10 (2 H, m, H7a + H7b), 4.25 (1 H, m, H6),
4.50 (1 H, t, J = 1.5
Hz, =CHH, H1a), 4.77 (1 H, t, J = 1.5 Hz, =CHH, H1b), 5.15 (1 H, dd, J = 10.5,
3.0 Hz, H4), 5.53 (1 H, dd, J = 3.0,
1.0 Hz, H5), 5.76 (1 H, dt, J = 10.5,
1.5 Hz, H3). ¹³C NMR (100 MHz, CDCl3): δ = 27.0,
27.1, 38.7, 38.8, 61.2, 66.6, 67.2, 71.5, 75.8, 95.3, 154.6, 176.7,
176.8, 177.8. ESI-HRMS:
m/z calcd
for C27H4409 [M + Na]+:
535.2878; found: 535.2868. Compound 9: ¹H
NMR (400 MHz, CDCl3): δ = 1.14-1.24 [36
H, m, 4 × COC(CH3)3],
3.77-3.78 (1 H, m, H6), 4.06-4.26 (2 H, m, H7a + H7b),
4.49 (1 H, t, J = 1.5
Hz, H1a), 4.80 (1 H, t, J = 1.5
Hz, H1b), 5.26 (2 H, dd, J = 7.0, 2.5
Hz, H4 + H5), 5.47 (1 H, m, H3). ¹³C
NMR (100 MHz, CDCl3): δ = 27.1, 27.2,
38.8, 38.9, 61.7, 67.6, 69.0, 72.8, 76.6, 96.2, 154.0, 176.4, 176.5,
177.1, 178.1. ESI-HRMS: m/z calcd
for C27H4409 [M + Na]+:
535.2878; found: 535.2902.
Compound 10: ¹H
NMR (400 MHz, CDCl3): δ = 1.13-1.25 [36
H, m, 4 × COC(CH3)3],
3.87 (1 H, m, H6), 4.23-4.25 (2 H, m, H7a + H7b),
4.71 (1 H, d, J = 1.0
Hz, H1a), 4.83 (1 H, d, J = 1.0
Hz, H1b), 5.15 (1 H, dd, J = 10.0,
3.5 Hz, H4), 5.62 (1 H, app t, J = 10.0
Hz, H5), 5.69 (1 H, d, J = 3.5
Hz, H3). ¹³C NMR (100 MHz, CDCl3): δ = 27.0,
27.1, 27.1, 38.7, 38.8, 38.9, 61.4, 64.5, 68.9, 71.0, 77.0, 101.4,
152.9, 176.6, 176.9, 177.3, 178.1. ESI-HRMS: m/z calcd
for C27H44O9
[M + Na]+:
535.2877; found: 535.2890.
<A NAME="RD00210ST-9">9</A>
To determine whether the carbohydrate
substrates were reactive towards Pd(0), a series of control experiments
were carried using cinnamyl acetate as a standard. Exposure of cinnamyl
acetate and exo-glycal 8b (or 9 or 10) to sodio-diethyl
malonate in the presence of a catalytic quantity of Pd(0) (Pd2dba3/dppe)
led to the expected substituted cinnamyl adduct as the only product
observed and galacto 8b was recovered unchanged.
With the gluco substrates 9 essentially
the same outcome was observed: cinnamyl acetate reacted but exo-glycal 9 did
not. In the case of the manno variant 10,
and under the same reaction conditions, none of the cinnamyl substitution
product was detected, suggesting that coordination of Pd(0) to 10 occurred [to sequester Pd(0)] but
any resulting complex (e.g., 11) was then
unreactive towards the external malonate nucleophile.
<A NAME="RD00210ST-10A">10a</A>
Trost BM.
Van Vranken DL.
Chem. Rev.
1996,
96:
395
<A NAME="RD00210ST-10B">10b</A>
Trost BM.
Keinan E.
Tetrahedron
Lett.
1980,
21:
2591
<A NAME="RD00210ST-10C">10c</A>
Dunkerton LV.
Euske JM.
Serino AJ.
Carbohydr. Res.
1987,
171:
89
<A NAME="RD00210ST-10D">10d</A>
Shi G.
Huang X.-H.
Zhang F.-J.
Tetrahedron
Lett.
1995,
36:
6305
<A NAME="RD00210ST-11">11</A>
Extensive attempts (varying ligands,
reaction temperatures, solvents and catalysts, including use of
palladium and nickel) to carry out the allylic displacement chemistry
using manno substrate 10 were all unsuccessful.
<A NAME="RD00210ST-12">12</A>
Spectroscopic data are provided for
the galacto series shown in Scheme
[4]
.
Compound 13: ¹H NMR (400 MHz,
CDCl3): δ = 1.12-1.28 [36
H, m, 4 × COC(CH3)3],
3.12 (1 H, d, J = 13.5
Hz, 1 × CH2N3),
3.62 (1 H, d, J = 13.5
Hz, 1 × CH2N3),
3.94 (1 H, dd, J = 11.0,
9.0 Hz, H6a), 4.03 (1 H, dd, J = 11.0,
6.0 Hz, H6b), 4.71 (1 H, m, H5), 5.48 (1 H, dd, J = 10.5,
3.0 Hz, H3), 5.59 (1 H, dd, J = 3.0,
1.0 Hz, H4), 5.87 (1 H, d, J = 10.5
Hz, H2), 7.35-7.44 (3 H, m, ArCH), 7.58-7.61 (2
H, m, ArCH). ¹³C NMR (100 MHz, CDCl3): δ = 26.9,
27.0, 27.1, 38.7, 38.8, 38.9, 39.0, 56.1, 60.3, 66.5, 66.7, 70.5,
70.5, 91.9, 124.5, 129.3, 137.6, 176.3, 177.9, 180.4, 180.5. ESI-HRMS: m/z calcd for C33H49N3O9Se [M + Na]+:
734.2526; found: 734.2556.
Compound 14: ¹H
NMR (400 MHz, CDCl3): δ = 1.11-1.27 [36
H, m, 4 × COC(CH3)3],
2.09 (3 H, s, NHCOCH
3), 3.36 (1
H, dd, J = 14.5,
3.5 Hz, 1 × CH
2NHCOCH3),
3.97 (1 H, m, H6a), 4.06-4.15 (2 H, m, H6b + 1 × CH
2NHCOCH3), 4.85
(1 H, m, H5), 5.50-5.53 (2 H, m, H2 + H4), 5.61
(1 H, m, H3), 6.03 (1 H, m, NH), 7.31-7.38 (3 H, m, ArCH),
7.59-7.64 (2 H, m, ArCH). ¹³C
NMR (100 MHz, CDCl3): δ = 20.7, 26.9,
27.0, 27.1, 27.2, 27.2, 38.7, 38.8, 39.0, 45.0, 60.4, 66.4, 67.1,
70.2, 71.1, 91.6, 124.7, 129.1, 129.2, 129.2, 137.4, 169.3, 176.4,
177.2, 177.9, 178.1. ESI-HRMS: m/z calcd
for C35H53NO10Se [M + Ma]+:
750.2727; found: 750.2712.
Compound 15: ¹H
NMR (300 MHz, CDCl3): δ = 1.11-
1.30 [36
H, m, 4 × COC(CH3)3],
1.40-1.55 [2 H, m, CH2CH
2CO2C(CH3)3],
2.06 (3 H, s, NHCOCH
3), 2.17-
2.32 [2
H, m, CH
2CH2CO2C(CH3)3],
3.38-3.44 (2 H, m, CH
2NHCOCH3),
3.62 (1 H, m, H5), 3.97-4.04 (2 H, m, H6a + H6b),
5.08 (1 H, dd, J = 10.5,
3.0 Hz, H4), 5.20 (1 H, d, J = 10.0
Hz, H2), 5.48 (1 H, dd, J = 10.0,
3.0 Hz, H3), 6.05 (1 H, d, J = 5.0
Hz, NH). ¹³C NMR (100 MHz, acetone-d
6): δ = 20.2,
23.5, 26.5, 26.6, 26.7, 26.8, 27.1, 27.5, 27.5, 27.6, 27.6, 38.4,
38.8, 39.5, 42.5, 61.3, 66.5, 67.8, 72.5, 77.0, 106.9, 172.1, 172.9.
ESI-HRMS: m/z calcd for C36H61NO12 [M + Na]+:
722.4086; found: 722.4098.
Compound 18: ¹H
NMR (300 MHz, acetone-d
6): δ = 1.09-1.22 [36
H, m, 4 × COC(CH3)3],
1.44-1.49 [2 H, m, CH2CH
2CO2C(CH3)3],
2.01 (3 H, s, NHCOCH
3), 2.40-2.42 (2
H, m, CH
2CH2CO2C(CH3)3),
3.26 (1 H, dd, J = 14.5,
4.5, 1 × CH
2NHCOCH3),
3.43 (1 H, dd, J = 14.5,
7.5, 1 × CH
2NHCOCH3),
4.02 (1 H, m, H5), 4.09-4.11 (2 H, m, H6a + H6b),
5.00 (1 H, app t, J = 10.0
Hz, H4), 5.17 (1 H, d, J = 10.0
Hz, H2), 5.49 (1 H, app t, J = 10.0
Hz, H3), 6.42 (1 H, br s, NH). ¹³C
NMR (100 MHz, acetone-d
6): δ = 20.2, 23.3,
26.5, 26.6, 26.7, 27.5, 27.0, 27.6, 29.5, 29.3, 42.4, 62.7, 68.6,
70.1, 71.2, 104.1, 169.2, 172.0, 176.8, 177.3, 177.3. ESI-HRMS: m/z calcd for C36H61NO12 [M + Na]+:
722.4086; found: 722.4109.
Compound 21: ¹H
NMR (400 MHz, acetone-d
6): δ = 1.10-1.29 [36
H, m, 4 × COC(CH3)3],
1.44-1.50 [2 H, m, CH2CH
2CO2C(CH3)3],
2.12 (3 H, s, NHCOCH
3), 2.29-
2.32 [2
H, m, CH
2CH2CO2C(CH3)3],
3.22 (1 H, m, 1 × CH
2NHCOCH3),
3.40 (1 H, m, 1 × CH
2NHCOCH3), 3.90
(1 H, m, H5), 4.12 (1 H, dd, J = 12.0,
4.5 Hz, H6a), 4.24 (1 H, d, J = 12.0,
2.0 Hz, H6b), 5.14 (1 H, dd, J = 10.0,
3.5 Hz, H3), 5.36 (1 H, d, J = 10.0
Hz, H2), 5.41 (1 H, dd, J = 3.5,
1.0 Hz, H4). ¹³C NMR (100 MHz, acetone-d
6): δ = 20.0,
26.4, 26.5, 26.6, 26.7, 27.0, 27.5, 27.6, 27.7, 38.3, 38.5, 39.0,
42.0, 42.3, 61.9, 65.6, 68.1, 72.4, 76.2, 100.0, 173.2, 176.9, 177.1,
179.8. ESI-HRMS: m/z calcd for
C36H61NO12 [M + Na]+:
722.4086; found: 722.4087.
<A NAME="RD00210ST-13A">13a</A>
An
X-ray diffraction experiment on 16 was
carried out at 100 K on a Bruker APEX II diffractometer using MoKα radiation
(λ = 0.71073 Å). The
data collection was performed using a CCD area detector from a single
crystal mounted on a glass fibre. Intensities were integrated (Bruker-AXS
SAINT V7.60A) from several series of exposures measuring 0.5˚ in ω or φ.
Absorption corrections were based on equivalent reflections using
SADABS (Sheldrick, G. M. SADABS V2008/1, University of Göttingen,
Germany), and structures were refined against all Fo
² data
with hydrogen atoms riding in calculated positions using SHELXL
Bruker-AXS SAINT V7.60A.¹³b The Cambridge
Crystallographic Data Centre deposition number for 16 is
CCDC 763564.
<A NAME="RD00210ST-13B">13b</A>
Sheldrick GM.
Acta Crystallogr., Sect. A
2008,
64:
112
<A NAME="RD00210ST-14A">14a</A>
Mehta S.
Pinto BM.
Tetrahedron
Lett.
1991,
32:
4435
<A NAME="RD00210ST-14B">14b</A>
Mehta S.
Pinto BM.
J. Org. Chem.
1993,
58:
3269
<A NAME="RD00210ST-14C">14c</A>
Demchenko A.
Synlett
2003,
1225
<A NAME="RD00210ST-14D">14d</A>
France
RR.
Compton RG.
Davis BG.
Fairbanks AJ.
Rees NV.
Wadhawan JD.
Org. Biomol. Chem.
2004,
2:
2195
<A NAME="RD00210ST-15">15</A>
Compound 22: ¹H
NMR (400 MHz, acetone-d
6): δ = 1.06, 1.10,
1.16, 1.26 [36 H, 4 × s, 4 × COC(CH3)3],
1.97 (NHCOCH
3), 3.53 (1 H,
dd, J = 15.0,
5.0 Hz, 1 × CH
2NHCOCH3),
3.74 (1 H, dd, J = 15.0,
8.0 Hz, 1 × CH
2NHCOCH3),
4.09 (1 H, m, H5), 4.16 (1 H, dd, J = 12.0, 4.5
Hz, H6a), 4.32 (1 H, dd, J = 12.0,
2.0 Hz, H6b), 4.67 (1 H, d, J = 12.0
Hz, 1 × CH2Ph), 4.90 (1 H,
d, J = 12.0
Hz, 1 × CH2Ph), 5.37 (1 H,
app t, J = 2.0
Hz, H2), 5.44-5.46 (2 H, m, H3 + H4), 6.16 (1
H, app t, J = 6.0
Hz, NH), 7.35 (1 H, m, ArCH), 7.40-7.48 (4 H, m, ArCH). ¹³C
NMR (100 MHz, CDCl3): δ = 20.3, 26.5,
26.5, 26.6, 26.8, 37.7, 38.3, 38.5, 38.6, 38.7, 59.7, 61.6, 62.7,
65.0, 68.1, 70.1, 101.4, 127.7, 127.8, 128.7, 138.0, 170.0, 176.3,
176.6, 177.1, 177.3. ESI-HRMS: m/z calcd
for C36H55NO11 [M + Na]+: 700.3667;
found: 700.3679
Compound 23: ¹H
NMR (400 MHz, CDCl3): δ = 1.12, 1.14, 1.25,
1.30 [36 H, 4 × s, 4 × COC(CH3)3],
3.26 (1 H, d, J = 13.5
Hz, 1 × CH2N3),
3.70 (1 H, d, J = 13.5
Hz, 1 × CH2N3), 3.92 (1
H, app dq, J = 10.0,
2.0 Hz, H5), 4.12
(1 H, app d, J = 3.5
Hz, H6a), 4.14 (1 H, app d, J = 3.5
Hz, H6b), 4.62 (2 H, ABq, J = 12.0
Hz, CH
2Ph), 5.41-5.52
(2 H, m, H3 + H4), 5.58 (1 H, d, J = 3.0
Hz, H2), 7.35-7.45 (5 H, m, ArCH). ¹³C
NMR (100 MHz, CDCl3): δ = 27.0, 27.1, 38.3,
38.8, 49.5, 61.8, 63.3, 64.7, 68.4, 70.1, 70.6, 100.8, 127.2, 128.7,
131.5, 136.4, 176.7, 177.1, 178.0. ESI-HRMS: m/z calcd
for C34H51N3O11 [M + Na]+:
684.3467; found: 684.3478.