Subscribe to RSS
DOI: 10.1055/s-0029-1220718
© Georg Thieme Verlag KG Stuttgart · New York
Hypophosphatasie
HypophosphatasiaPublication History
Publication Date:
23 July 2009 (online)
Zusammenfassung
Die Hypophosphatasie (HP) ist eine seltene in der Mehrzahl autosomal rezessiv vererbte Erkrankung des Knochenstoffwechsels mit verminderter Aktivität der gewebe-unspezifischen alkalischen Phosphatase (TNSAP) und konsekutiver Akkumulation von nicht abgebauten Stoffwechselprodukten. Sie ist charakterisiert durch eine generelle Störung der Knochenmineralisation mit nachfolgenden Knochendeformitäten, Frakturen oder auch chronischer nicht-bakterieller Osteomyelitis. Weitere Symptome wie Nierenbeteiligung mit Nephrokalzinose, Kraniosynostosen und insbesondere Zahnveränderungen bzw. vorzeitiger Zahnverlust können auftreten und wurden auch im Rahmen der 2004 durchgeführten ESPED Erhebung als wesentliche, zur Diagnose führende Symptome, beschrieben. Kürzlich konnten wir zeigen, dass der klinische Phänotyp der infantil – juvenilen Form unter Anderem durch Entzündung von Gelenken und Knochen beeinflusst wird. Der genaue Pathomechanismus, der zur Zellaktivierung mit resultierender Knochenentzündung und Gewebsdestruktion führt, ist noch nicht endgültig geklärt. Nach aktuellem Forschungsstand scheinen akkumulierende Kalziumpyrophosphatkristalle, die zur Aktivierung von Rezeptoren des angeborenen Immunsystems und nachfolgend verschiedener komplexer inflammatorischer Signalkaskaden führen, hierbei eine entscheidende Rolle zu spielen. Zur Diagnosesicherung werden laborchemische Analysen, humangenetische Tests sowie bildgebende Verfahren eingesetzt. Gerade aufgrund der Vielseitigkeit der möglichen klinischen Symptome ist eine enge Anbindung an ein mit HP-Patienten erfahrenes Zentrum mit multidisziplinärer Betreuung (Pädiatrie, Radiologie, Orthopädie, Neurochirurgie, Kieferorthopädie und Parodontologie, Physiotherapie und Ernährungsberatung) von entscheidender Bedeutung. Da derzeit noch keine kurativen Therapien, z. B. eine Enzymersatztherapie ausreichend evaluiert sind, stehen aktuell symptomatische Therapieansätze im Vordergrund der Behandlung.
Abstract
Hypophosphatasia (HP) is an inborn error of bone metabolism transmitted predominantly as an autosomal-recessive trait. It is characterized by a reduced activity of the tissue-nonspecific isoenzyme of alkaline phosphatase (TNSAP) and elevated concentrations of its substrates, including pyrophosphates. Clinical symptoms include defective bone mineralisation with bone deformities, fractures and as recently defined chronic non-bacterial osteomyelitis. Renal damage due to calcification, craniosynostosis and dental abnormalities with premature loss of dentition are further symptoms, which have been described as characteristic in the ESPED inquiry of 2004. Knowledge about the mechanisms underlying cell activation leading to inflammation and tissue destruction is still limited in HP. Recent investigations have provided evidence that calcium pyrophosphate crystals are essentially involved in activating inflammatory signal transduction pathways via different receptors of the innate immune system. Laboratory assays, genetic counselling and testing, and radiologic imaging can confirm the diagnosis. Because symptoms are highly variable in their clinical expression, patients should be followed by a HP-experienced multidisciplinary team (paediatrician, radiologist, orthopedist, neurosurgeon, dentist). At the moment symptomatic support and treatment is most important because a causative therapy, e. g. enzyme replacement therapy, is not yet available.
Schlüsselwörter
Hypophosphatasie - Knochenentzündung - Osteomyelitis - Kristallinduzierte Entzündung - Inflammasom - CRMO
Key words
Hypophosphatasia - osteomyelitis - CRMO - crystal-induced arthritis - Inflammasome
Literatur
- 1 Akahoshi T. et al . Recent advances in crystal-induced acute inflammation. Curr Opin Rheumatol. 2007; 19 146-150
- 2 Auron A. et al . Resolution of medullary nephrocalcinosis in children with metabolic bone disorders. Pediatr Nephrol. 2005; 20 1143-1145
- 3 Barcia JP. et al . Infantile hypophosphatasia: treatment options to control hypercalcemia, hypercalciuria, and chronic bone demineralization. J Pediatr. 1997; 130 825-828
- 4 Baumgartner-Sigl S. et al . Pyridoxine-responsive seizures as the first symptom of infantile hypophosphatasia caused by two novel missense mutations (c677T>C, p.M226T; c.1112C>T, p.T371I) of the tissue-nonspecific alkaline phosphatase gene. Bone. 2007; 40 1655-1661
- 5 Beck C. et al . How can calcium pyrophosphate crystals induce inflammation in hypophosphatasia or chronic inflammatory joint diseases?. Rheumatol Int. 2008;
- 6 Bessler W,. , Fanconi A Die Rö 1972; 117 58-65
- 7 Bouchard L. et al . Inflammatory microcrystals alter the functional phenotype of human osteoblast-like cells in vitro: synergism with IL-1 to overexpress cyclooxygenase-2. J Immunol. 2002; 168 5310-5317
- 8 Brock DJ. et al . First-trimester prenatal diagnosis of hypophosphatasia: experience with 16 cases. Prenat Diagn. 1991; 11 387-391
- 9 Chen CJ. et al . MyD88-dependent IL-1 receptor signaling is essential for gouty inflammation stimulated by monosodium urate crystals. J Clin Invest. 2006; 116 2262-2271
- 10 Chuck AJ. et al . Crystal deposition in hypophosphatasia: a reappraisal. Ann Rheum Dis. 1989; 48 571-576
- 11 Collmann H. et al . Neurosurgical aspects of childhood hypophosphatasia. Childs Nerv Syst. 2008;
- 12 Dayer JM. et al . Effect of synthetic calcium pyrophosphate and hydroxyapatite crystals on the interaction of human blood mononuclear cells with chondrocytes, synovial cells, and fibroblasts. Arthritis Rheum. 1987; 30 1372-1381
- 13 Dinarello CA. Biologic basis for interleukin-1 in disease. Blood. 1996; 87 2095-2147
- 14 Drenth JP. et al . The inflammasome – a linebacker of innate defense. N Engl J Med. 2006; 355 730-732
- 15 Fedde KN. et al . Alkaline phosphatase (tissue-nonspecific isoenzyme) is a phosphoethanolamine and pyridoxal-5′-phosphate ectophosphatase: normal and hypophosphatasia fibroblast study. Am J Hum Genet. 1990; 47 767-775
- 16 Ferrari D. et al . The P2X7 receptor: a key player in IL-1 processing and release. J Immunol. 2006; 176 3877-3883
- 17 Girschick HJ. et al . Langzeitbetreuung bei kindlicher Hypophosphatasie. Klin Pädiatr. 2007; 219 98-112
- 18 Girschick HJ. et al . Chronic multifocal non-bacterial osteomyelitis in hypophosphatasia mimicking malignancy. BMC Pediatr. 2007; 7 3
- 19 Girschick HJ. et al . Chronic non-bacterial osteomyelitis in children. Ann Rheum Dis. 2005; 64 279-285
- 20 Girschick HJ. et al . Effective NSAID treatment indicates that hyperprostaglandinism is affecting the clinical severity of childhood hypophosphatasia. Orphanet J Rare Dis. 2006; 1 24
- 21 Girschick HJ. et al . Bone metabolism and bone mineral density in childhood hypophosphatasia. Bone. 1999; 25 361-367
- 22 Girschick HJ. et al . Treatment of childhood hypophosphatasia with nonsteroidal antiinflammatory drugs. Bone. 1999; 25 603-607
- 23 Girschick HJ. et al . Chronic recurrent multifocal osteomyelitis: what is it and how should it be treated?. Nat Clin Pract Rheumatol. 2007; 3 733-738
- 24 Hallegua DS. et al . Potential therapeutic uses of interleukin 1 receptor antagonists in human diseases. Ann Rheum Dis. 2002; 61 960-967
- 25 Hessle L. et al . Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci USA. 2002; 99 9445-9449
- 26 Jones AC. et al . Diseases associated with calcium pyrophosphate deposition disease. Semin Arthritis Rheum. 1992; 22 188-202
- 27 Lia-Baldini AS. et al . A new mechanism of dominance in hypophosphatasia: the mutated protein can disturb the cell localization of the wild-type protein. Hum Genet. 2008; 123 429-432
- 28 Liu-Bryan R. et al . Monosodium urate and calcium pyrophosphate dihydrate (CPPD) crystals, inflammation, and cellular signaling. Joint Bone Spine. 2005; 72 295-302
- 29 Liu-Bryan R. et al . TLR2 signaling in chondrocytes drives calcium pyrophosphate dihydrate and monosodium urate crystal-induced nitric oxide generation. J Immunol. 2005; 174 5016-5023
- 30 Mariathasan S. et al . Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol. 2007; 7 31-40
- 31 Martinon F. et al . Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature. 2006; 440 ((7081)) 237-241
- 32 Millan JL. et al . Enzyme Replacement Therapy for Murine Hypophosphatasia. J Bone Miner Res. 2007;
- 33 Mornet E. Hypophosphatasia. Orphanet J Rare Dis. 2007; 2 40
- 34 Muller HL. et al . Asp361Val Mutant of alkaline phosphatase found in patients with dominantly inherited hypophosphatasia inhibits the activity of the wild-type enzyme. J Clin Endocrinol Metab. 2000; 85 743-747
- 35 Murakami Y. et al . Induction of triggering receptor expressed on myeloid cells 1 in murine resident peritoneal macrophages by monosodium urate monohydrate crystals. Arthritis Rheum. 2006; 54 455-462
- 36 Ogura Y, Sutterwala FS, Flavell RA. The inflammasome: First line of the immune response to cell stress. Cell. 2006; 126 659-662
- 37 Reginato AM. et al . Genetics and experimental models of crystal-induced arthritis. Lessons learned from mice and men: is it crystal clear?. Curr Opin Rheumatol. 2007; 19 134-145
- 38 Schiff MH. Role of interleukin 1 and interleukin 1 receptor antagonist in the mediation of rheumatoid arthritis. Ann Rheum Dis. 2000; 59 ((Suppl 1)) i103-108
- 39 Shi Y. et al . Molecular identification of a danger signal that alerts the immune system to dying cells. Nature. 2003; 425 ((6957)) 516-521
- 40 Shohat M. et al . Perinatal lethal hypophosphatasia; clinical, radiologic and morphologic findings. Pediatr Radiol. 1991; 21 421-427
- 41 Stevenson DA. et al . Autosomal recessive hypophosphatasia manifesting in utero with long bone deformity but showing spontaneous postnatal improvement. J Clin Endocrinol Metab. 2008; 93 3443-3448
- 42 Stylianou E. et al . Interleukin-1. Int J Biochem Cell Biol. 1998; 30 1075-1079
- 43 Takeda K. et al . Toll-like receptors in innate immunity. Int Immunol. 2005; 17 1-14
- 44 Ting JP. et al . CATERPILLERs, pyrin and hereditary immunological disorders. Nat Rev Immunol. 2006; 6 183-195
- 45 Uematsu S. et al . Toll-like receptors and innate immunity. J Mol Med. 2006; 84 712-725
- 46 Utsch B. et al . Infantile hypophosphatasia due to a new compound heterozygous TNSALP mutation – functional evidence for a hydrophobic side-chain?. Exp Clin Endocrinol Diabetes. 2009; 117 28-33
- 47 van den Bos T. et al . Cementum and dentin in hypophosphatasia. J Dent Res. 2005; 84 1021-1025
- 48 Whyte M. et al . Marrow cell transplantation for infantile hypophosphatasia. J Bone Miner Res. 2003; 18 624-636
-
49 Whyte MP. Hypophosphatasia. In: Scriver CR, Beaudet AL, Sly S, Eds
The metabolic and molecular basis of inherited disease . New York: McGraw-Hill 1995: 4095-4111 - 50 Whyte MP. et al . Alkaline phosphatase: placental and tissue-nonspecific isoenzymes hydrolyze phosphoethanolamine, inorganic pyrophosphate, and pyridoxal 5-phosphate Substrate accumulation in carriers of hypophosphatasia corrects during pregnancy. J Clin Invest. 1995; 95 1440-1445
- 51 Witters I. et al . Skeletal dysplasias: 38 prenatal cases. Genet Couns. 2008; 19 267-275
- 52 Zankl A. et al . Specific ultrasonographic features of perinatal lethal hypophosphatasia. Am J Med Genet A. 2008; 146A 1200-1204
Korrespondenzadresse
Prof. Hermann Josef Girschick
University of Würzburg Pediatrics
Josef-Schneider-Straße 2
97080 Wuerzburg
Germany
Phone: 49/931/201 277 28
Fax: 49/931/201 277 20
Email: Hermann.Girschick@mail.uni-wuerzburg.de