Klin Monbl Augenheilkd 2011; 228(3): 201-207
DOI: 10.1055/s-0029-1245379
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Pharmakologische Vitreolyse

Pharmacological VitreolysisA. Gandorfer1
  • 1Augenklinik der Ludwig-Maximilians-Universität München
Further Information

Publication History

Eingegangen: 3.3.2010

Angenommen: 30.3.2010

Publication Date:
15 September 2010 (online)

Zusammenfassung

Hintergrund: Der Glaskörper hat entscheidenden Einfluss auf die Entwicklung und den Verlauf der meisten vitreoretinalen Erkrankungen, welche heute mittels Vitrektomie behandelt werden. Da die mechanische Vitrektomie unvollständig ist, sucht man nach pharmakologischen, enzymatischen Alternativen, welche die Intervention sicherer und effektiver machen sollen. Methode: Verschiedene Substanzen (Chondroitinase, Dispase, Hyaluronidase, Plasmin, Microplasmin) wurden präklinisch und im Falle von Hyaluronidase und Microplasmin (ThromboGenics Ltd., Dublin, Leuven) auch klinisch untersucht. Die bislang veröffentlichten präklinischen und klinischen Ergebnisse werden berichtet. Resultate: Microplasmin kann dosisabhängig eine komplette hintere Glaskörperabhebung induzieren. Morphologische, immunzytochemische oder funktionelle Netzhautveränderungen finden sich nicht. Die zwei bislang veröffentlichten Phase-II-Studien bestätigen dieses Wirkprofil bei guter Verträglichkeit. Die übrigen getesteten Substanzen scheinen weniger gut zur pharmakologischen Vitreolyse geeignet zu sein, da sie Netzhautschäden induzieren können (Dispase) oder den Glaskörper nur verflüssigen, ohne ihn primär von der Netzhaut abzulösen (Hyaluronidase). Schlussfolgerung: Microplasmin trennt den Glaskörper von der Netzhaut ohne morphologische oder funktionelle Netzhautveränderungen zu induzieren. Die Ergebnisse der klinischen Prüfung lassen erkennen, dass Microplasmin hilfreich sein kann, die Ablösung des Glaskörpers vor oder bei der Vitrektomie zu erleichtern und die Intervention atraumatischer und sicherer zu machen.

Abstract

Background: The vitreous plays an important role in the development and progression of vitreoretinal diseases. Vitrectomy is the treatment modality of choice in these cases. However, mechanical vitrectomy is incomplete. Therefore, alternative strategies have been pursued including pharmacological means such as enzymes. The goal of pharmacological vitreolysis is to make the surgical intervention easier and less traumatic. Methods: Different substances have been investigated, including chondroitinase, dispase, hyaluronidase, plasmin, and microplasmin. Besides preclinical investigations, hyaluronidase and microplasmin (ThromboGenics Ltd., Dublin, Leuven) have been tested clinically. Results from the literature are reported herein. Results: Plasmin and microplasmin are both capable of inducing posterior vitreous detachment (PVD) in a dose- and time-dependent manner. There are no morphological or functional changes of the retina at therapeutic doses. Two phase II studies published to date demonstrate both efficacy and safety. Phase III studies are ongoing, and results are expected during 2010. Other enzymes tested show limitations in that retinal damage may occur (dispase) or liquefaction (hyaluronidase) occurs without cleavage of the vitreous cortex from the retina. Conclusions: Microplasmin induces PVD. Results from clinical trials show that microplasmin helps to detach the vitreous cortex from the retina. This may be advantageous in terms of complete vitreous removal and less traumatic intervention compared to mechanical techniques, such as vitrectomy and peeling of the internal limiting membrane.

Literatur

  • 1 Sebag J. The vitreous. Structure, function, pathobiology.. New York: Springer Verlag; 1989
  • 2 Sebag J. Vitreous: the resplendent enigma.  Br J Ophthalmol. 2009;  93 (8) 989-991
  • 3 Sebag J. Anomalous posterior vitreous detachment: a unifying concept in vitreo-retinal disease.  Graefes Arch Clin Exp Ophthalmol. 2004;  242 (8) 690-698
  • 4 Sebag J. Vitreoschisis.  Graefes Arch Clin Exp Ophthalmol. 2008;  246 (3) 329-332
  • 5 Krebs I et al. Posterior vitreomacular adhesion: a potential risk factor for exudative age-related macular degeneration?.  Am J Ophthalmol. 2007;  144 (5) 741-746
  • 6 Bhisitkul R B. Anticipation for enzymatic vitreolysis.  British Journal of Ophthalmology. 2001;  85 1-2
  • 7 Sebag J. Pharmacologic vitreolysis.  Retina. 1998;  18 (1) 1-3
  • 8 Sebag J. Pharmacologic vitreolysis--premise and promise of the first decade.  Retina. 2009;  29 (7) 871-874
  • 9 Nasrallah F P et al. The role of the vitreous in diabetic macular edema.  Ophthalmology. 1988;  95 (10) 1335-1339
  • 10 Hikichi T et al. Association between the short-term natural history of diabetic macular edema and the vitreomacular relationship in type II diabetes mellitus.  Ophthalmology. 1997;  104 (3) 473-478
  • 11 Capeans C et al. Comparative study of incomplete posterior vitreous detachment as a risk factor for proliferative vitreoretinopathy.  Graefes Arch Clin Exp Ophthalmol. 1998;  236 (7) 481-485
  • 12 Bonnet M. The development of severe proliferative vitreoretinopathy after retinal detachment surgery. Grade B: a determining risk factor.  Graefes Arch Clin Exp Ophthalmol. 1988;  226 (3) 201-205
  • 13 Tolentino F I, Schepens C L, Freeman H M. Massive preretinal retraction. A biomicroscopic study.  Arch Ophthalmol. 1967;  78 16-22
  • 14 Sebag J. Diabetic vitreopathy.  Ophthalmology. 1996;  103 (2) 205-206
  • 15 Gandorfer A. [The need for pharmacology in vitreoretinal surgery SOE Lecture 2007].  Klin Monatsbl Augenheilkd. 2007;  224 (12) 900-904
  • 16 Gandorfer A. Objective of Pharmacologic Vitreolysis.  Dev Ophthalmol. 2009;  44 1-6
  • 17 Faulborn J, Bowald S. Microproliferations in proliferative diabetic retinopathy and their relationship to the vitreous: corresponding light and electron microscopic studies.  Graefes Arch Clin Exp Ophthalmol. 1985;  223 (3) 130-138
  • 18 Schwartz S D et al. Recognition of vitreoschisis in proliferative diabetic retinopathy. A useful landmark in vitrectomy for diabetic traction retinal detachment.  Ophthalmology. 1996;  103 (2) 323-328
  • 19 Johnson M W, Van Newkirk M R, Meyer K A. Perifoveal vitreous detachment is the primary pathogenic event in idiopathic macular hole formation.  Arch Ophthalmol. 2001;  119 (2) 215-222
  • 20 Gandorfer A et al. Pathology of the macular hole rim in flat-mounted internal limiting membrane specimens.  Retina. 2009;  29 (8) 1097-105
  • 21 Gandorfer A, Rohleder M, Kampik A. Epiretinal pathology of vitreomacular traction syndrome.  Br J Ophthalmol. 2002;  86 (8) 902-909
  • 22 Gandorfer A et al. Resolution of diabetic macular edema after surgical removal of the posterior hyaloid and the inner limiting membrane.  Retina. 2000;  20 (2) 126-133
  • 23 Gandorfer A et al. Epiretinal pathology of diffuse diabetic macular edema associated with vitreomacular traction.  Am J Ophthalmol. 2005;  139 (4) 638-652
  • 24 Shimada H et al. Concentration gradient of vascular endothelial growth factor in the vitreous of eyes with diabetic macular edema.  Invest Ophthalmol Vis Sci. 2009;  50 (6) 2953-2955
  • 25 Stefansson E. Physiology of vitreous surgery.  Graefes Arch Clin Exp Ophthalmol. 2009;  247 (2) 147-163
  • 26 Stefansson E, Landers III M B, Wolbarsht M L. Vitrectomy, lensectomy, and ocular oxygenation.  Retina. 1982;  2 (3) 159-166
  • 27 Quiram P A et al. Microplasmin-induced posterior vitreous detachment affects vitreous oxygen levels.  Retina. 2007;  27 (8) 1090-1096
  • 28 Goldenberg D T, Trese M T. Pharmacologic vitreodynamics and molecular flux.  Dev Ophthalmol. 2009;  44 31-36
  • 29 Gandorfer A et al. Ultrastructure of the vitreoretinal interface following plasmin assisted vitrectomy.  Br J Ophthalmol. 2001;  85 (1) 6-10
  • 30 Eckardt C et al. Removal of the internal limiting membrane in macular holes. Clinical and morphological findings.  Ophthalmologe. 1997;  94 (8) 545-551
  • 31 Haritoglou C et al. Long-term follow-up after macular hole surgery with internal limiting membrane peeling.  Am J Ophthalmol. 2002;  134 (5) 661-666
  • 32 Hageman G S, Russell S R. Chondroitinase-mediated disinsertion of the primate vitreous body.  Invest Ophthalmol Vis Sci. 1994;  35 1260
  • 33 Hikichi T, Kado M, Yoshida A. Intravitreal injection of hyaluronidase cannot induce posterior vitreous detachment in the rabbit.  Retina. 2000;  20 (2) 195-198
  • 34 Sebag J. Is pharmacologic vitreolysis brewing?.  Retina. 2002;  22 (1) 1-3
  • 35 Kuppermann B D et al. Safety results of two phase III trials of an intravitreous injection of highly purified ovine hyaluronidase (Vitrase) for the management of vitreous hemorrhage.  Am J Ophthalmol. 2005;  140 (4) 585-597
  • 36 Kuppermann B D et al. Pooled efficacy results from two multinational randomized controlled clinical trials of a single intravitreous injection of highly purified ovine hyaluronidase (Vitrase) for the management of vitreous hemorrhage.  Am J Ophthalmol. 2005;  140 (4) 573-584
  • 37 Stenn K S, Link R, Moelmann G. Dispase, a neutral protease from Bacillus polymyxa, is a powerful fibronectinase and type IV collagenase.  J Invest Dermatol. 1989;  93 287-290
  • 38 Tezel T H, Del P riore LV, Kaplan H J. Posterior vitreous detachment with dispase.  Retina. 1998;  18 (1) 7-15
  • 39 Oliveira L B et al. Dispase facilitates posterior vitreous detachment during vitrectomy in young pigs.  Retina. 2001;  21 (4) 324-331
  • 40 Jorge R et al. Intravitreal injection of dispase causes retinal hemorrhages in rabbit and human eyes.  Curr Eye Res. 2003;  26 (2) 107-112
  • 41 Verstraeten T C et al. Pharmacologic induction of posterior vitreous detachment in the rabbit.  Arch Ophthalmol. 1993;  111 (6) 849-854
  • 42 Gandorfer A et al. Vitreoretinal morphology of plasmin-treated human eyes.  Am J Ophthalmol. 2002;  133 (1) 156-159
  • 43 Gandorfer A, Ulbig M, Kampik A. Plasmin-assisted vitrectomy eliminates cortical vitreous remnants.  Eye. 2002;  16 (1) 95-97
  • 44 Nagai N et al. Recombinant human microplasmin: production and potential therapeutic properties.  J Thromb Haemost. 2003;  1 (2) 307-313
  • 45 Gandorfer A et al. Posterior vitreous detachment induced by microplasmin.  Invest Ophthalmol Vis Sci. 2004;  45 (2) 641-647
  • 46 Sakuma T et al. Safety of in vivo pharmacologic vitreolysis with recombinant microplasmin in rabbit eyes.  Invest Ophthalmol Vis Sci. 2005;  46 (9) 3295-3299
  • 47 Sebag J. Molecular biology of pharmacologic vitreolysis.  Trans Am Ophthalmol Soc. 2005;  103 473-494
  • 48 Sebag J, Ansari R R, Suh K I. Pharmacologic vitreolysis with microplasmin increases vitreous diffusion coefficients.  Graefes Arch Clin Exp Ophthalmol. 2007;  245 (4) 576-580
  • 49 Smet M D et al. Microplasmin Intravitreal Administration in Patients with Vitreomacular Traction Scheduled for Vitrectomy The MIVI I Trial.  Ophthalmology. 2009;  116 1349-1355
  • 50 Benz M S et al. A Placebo-Controlled Trial of Microplasmin Intravitreous Injection to Facilitate Posterior Vitreous Detachment before Vitrectomy.  Ophthalmology. 2010;  117 791-797
  • 51 Uemura de A et al. Effect of plasmin on laminin and fibronectin during plasmin-assisted vitrectomy.  Arch Ophthalmol. 2005;  123 (2) 209-213
  • 52 Chen W et al. Microplasmin degrades fibronectin and laminin at vitreoretinal interface and outer retina during enzymatic vitrectomy.  Curr Eye Res. 2009;  34 (12) 1057-1064
  • 53 Kohno T et al. Immunofluorescent studies of fibronectin and laminin in the human eye.  Invest Ophthalmol Vis Sci. 1987;  28 (3) 506-514
  • 54 Li X, Shi X, Fan J. Posterior vitreous detachment with plasmin in the isolated human eye.  Graefes Arch Clin Exp Ophthalmol. 2002;  240 (1) 56-62
  • 55 Gandorfer A. Enzymatic vitreous disruption.  Eye. 2008;  22 1273-1277
  • 56 Yoshida A, Ishiguro S, Tamai M. Expression of glial fibrillic acidic protein in rabbit müller cells after lensectomy-vitrectomy.  Invest Ophthalmol Vis Sci. 1993;  34 3154-3160
  • 57 Trese M. Enzymatic-assisted vitrectomy.  Eye. 2002;  16 365-368
  • 58 Trese M T, Williams G A, Hartzer M L. A new approach to stage 3 macular holes.  Ophthalmology. 2000;  107 (8) 1607-1611
  • 59 Williams J G et al. Autologous plasmin enzyme in the surgical management of diabetic retinopathy.  Ophthalmology. 2001;  108 (10) 1902-1905
  • 60 Margherio A R et al. Plasmin enzyme-assisted vitrectomy in traumatic pediatric macular holes.  Ophthalmology. 1998;  105 (9) 1617-1620

Prof. Dr. Arnd Gandorfer

Augenklinik der Ludwig-Maximilians-Universität München

Mathildenstr. 8

80336 München

Phone: ++ 49/89/51 60 38 56

Fax: ++ 49/89/51 60 47 78

Email: arnd.gandorfer@med.uni-muenchen.de