Fortschr Neurol Psychiatr 2011; 79(3): 171-188
DOI: 10.1055/s-0029-1246093
Fort- und Weiterbildung

© Georg Thieme Verlag KG Stuttgart · New York

Störungen des Hämostasesystems: Molekulare Mechanismen als Grundlage von Diagnostik und Therapie

Hemostatic Disorders: Clinical Management Based on Molecular MechanismsR. E. Scharf1
Further Information

Publication History

Publication Date:
10 March 2011 (online)

Lernziele

Die vorliegende Übersicht befasst sich mit der Physiologie, Pathophysiologie und klinisch-praktischen Aspekten des Hämostasesystems. Ziel ist es, folgende Kenntnisse zu vermitteln:

Komponenten des Hämostasesystems und ihre Funktion im Blutstillungsmechanismus, Stellgrößen und Störungen des hämostatischen Gleichgewichts, molekulare Mechanismen der Thrombozyten-Gefäßwand-Interaktion, Steuerung der plasmatischen Hämostase und Fibrinolyse, Thrombomodulin-Protein-C-System und Resistenz gegenüber aktiviertem Protein C, expositionelle und dispositionelle Ursachen einer Thromboseneigung, Potenzierung genetisch bedingter Kombinationsdefekte in Risikosituationen, angeborene und erworbene Ursachen einer Blutungsneigung, von-Willebrand-Faktor und von-Willebrand-Syndrom, antithrombotische Substanzen und deren Wirkmechanismus.

Literatur

  • 1 Scharf R E. Thrombozyten und Mikrozirkulationsstörungen. Klinische und experimentelle Untersuchungen zum Sekretionsverhalten und Arachidonsäurestoffwechsel der Blutplättchen. Stuttgart: Schattauer; 1986: 133-145 und 192 – 212
  • 2 Riess H. Erworbene Koagulopathien.  Hämostaseologie. 2008;  28 348-357
  • 3 Koscielny J, Ziemer S, Radtke H et al. A practical concept for preoperative identification of patients with impaired primary hemostasis.  Clin Appl Thromb Hemost. 2004;  10 195-204
  • 4 Ruggeri Z M, Mendolicchio G L. Adhesion mechanisms in platelet function.  Circ Res. 2007;  100 1673-1685
  • 5 Scharf R E. Erworbene Plättchenfunktionsstörungen. Pathogenese, Klassifikation, Häufigkeit, Diagnostik und Behandlung.  Hämostaseologie. 2008;  28 299-311
  • 6 Furlan M, Robles R, Galbusera M et al. Von Willebrand factor cleaving protease in thrombotic thrombocytopenic purpura and the hemolytic uremic syndrome.  N Engl J Med. 1998;  339 1578-1584
  • 7 Vincentelli A, Susen S, Le Torneau T et al. Acquired von Willebrand syndrome in aortic stenosis.  N Engl J Med. 2003;  349 343-349
  • 8 Schneppenheim R, Budde U. Angeborenes und erworbenes von-Willebrand-Syndrom.  Hämostaseologie. 2008;  28 312-319
  • 9 Scharf R E. Acquired platelet function defects: an underestimated but frequent cause of bleeding complications in clinical practice. In Scharf R E, ed Progress and Challenges in Transfusion Medicine, Hemostasis, and Hemotherapy. Basel: Karger; 2008: 296-316
  • 10 Ruggeri Z M. Platelet interactions with vessel wall components during thrombogenesis.  Blood Cell Mol Dis. 2006;  47 1903-1910
  • 11 Davie E W, Ratnoff O D. Waterfall sequence for intrinsic blood clotting.  Science. 1964;  145 1310-1312
  • 12 Preissner K T. Physiologie der Blutgerinnung und Fibrinolyse.  Hämostaseologie. 2008;  28 259-371
  • 13 Mann K G. Biochemistry and physiology of blood coagulation.  Thromb Haemost. 1999;  82 164-174
  • 14 Edmunds L H, Salzman E W. Hemostatic problems, transfusion therapy, and cardiopulmonary bypass in patients. In Colman R W, (eds) Hemostasis & Thrombosis.. Philadelphia: Lippincott; 1994: 956-968
  • 15 Engelmann R, Luther T, Müller I. Intravascular tissue factor pathway: a model for rapid initiation of coagulation within the blood vessel.  Thromb Haemost. 2003;  89 3-8
  • 16 Scharf R E, Kirchhoff E M, Hoffmann T. Detection and quantitation of platelet-derived microparticles and platelet-leukocyte conjugates: a flow cytometric study in patients with prothrombotic states (in preparation). 
  • 17 Müller F, Renné T. Novel roles for factor XII-driven plasma contact activation system.  Curr Opin Hematol. 2008;  15 516-521
  • 18 Scharf R E. Management of bleeding in patients using antithrombotic agents. Prediction, prevention, protection, and problem-oriented intervention.  Hämostaseologie. 2009;  29 388-398
  • 19 Gailani D, Renné T. The intrinsic pathway of coagulation: a target for treating thromboembolic disease?.  J Thromb Haemost. 2007;  5 1106-1112
  • 20 Stein P D, Hull R D, Patel K D et al. D-dimer for the exclusion of acute venous thrombosis and pulmonary embolism.  Ann Intern Med. 2004;  140 489-602
  • 21 Scharf R E, Zotz R B. Blood platelets and myocardial infarction: do hyperactive platelets really exist?.  Transf Med Hemother. 2006;  33 189-199
  • 22 Zotz R B, Scharf R E. Platelet receptor polymorphisms and their role in cardiovascular disease.  J Lab Med. 2002;  26 584-593
  • 23 Ciccone A, Abraha I, Santilli I. Glycoprotein IIb-IIIa inhibitors for acute ischemic stroke.  Stroke. 2007;  38 1113-1114
  • 24 Egeberg O. Inherited AT deficiency causing thrombophilia.  Thromb Diath Haemorrh. 1965;  13 516-519
  • 25 Griffin J H, Evatt B, Zimmerman T S et al. Deficiency of protein C in congenital thrombotic disease.  J Clin Invest. 1981;  68 1370-1373
  • 26 Mannhalter C. Molekularbiologie und Hämostase.  Hämostaseologie. 2008;  28 272-288
  • 27 Rosendaal F R, Reitsma P H. Genetics of venous thrombosis.  J Thromb Haemost. 2009;  7 (Suppl 1) 301-304
  • 28 Dahlbäck B, Carlsson M, Svensson P J. Familial thrombophilia due to a previously unrecognized mechanism characterized by poor anticoagulant response to activated protein C: prediction of a cofactor to activated protein C.  Proc Natl Acad Sci USA. 1993;  90 1004-1008
  • 29 Bertina R, Koeleman B P, Koster T et al. Mutation in blood coagulation factor V associated with resistance to activated protein C.  Nature. 1994;  369 64-67
  • 30 Poort S R, Rosendaal F R, Reitsma P H et al. A common genetic variation in the 3’ untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and increase in venous thrombosis.  Blood. 1996;  88 3698-3703
  • 31 Sartori M T, Wiman B, Vettore S et al. 4G/ 5G polymorphism of PAI-1 promotor and fibrinolytic capacity in patients with deep vein thrombosis.  Thromb Haemost. 1998;  80 956-960
  • 32 Francis C W. Plasminogen activator inhibitor-1 levels and polymorphisms. Association with venous thrombosis.  Arch Pathol Lab Med. 2002;  126 1401-1404
  • 33 Scharf R E, Gerhardt A, Stoldt V et al. Klinische und experimentelle Thromboseforschung: Genetische Determinanten, molekulare Mechanismen und therapeutische Strategien bei thrombotischen Komplikationen. Jahrbuch der Heinrich-Heine-Universität 2006 / 2007. Düsseldorf: University Press; 2007: 105-126
  • 34 Gerhardt A, Scharf R E, Beckmann M W et al. Prothrombin and factor V mutations in women with a history of thrombosis during pregnancy and the puerperium.  N Engl J Med. 2000;  342 374-380
  • 35 Bray P F. Platelet glycoprotein polymorphisms as risk factors for thrombosis.  Curr Opin Hematol. 2000;  7 284-289
  • 36 Zotz R B, Winkelmann B R, Scharf R E et al. Polymorphism of platelet membrane glycoprotein IIIa: human platelet antigen 1b (HPA-1b/PlA2) is an inherited risk factor for premature myocardial infarction in coronary artery disease.  Thromb Haemost. 1998;  79 731-735
  • 37 Zotz R B, Winkelmann B R, Scharf R E et al. Association of polymorphisms of platelet integrins αIIbβ3 (HPA-1b/Pl A 2) and α 2β1 (α2 807TT) with premature myocardial infarction.  J Thromb Haemost. 2005;  3 1522-1529
  • 38 Zotz R B, Stockschläder M, Scharf R E et al. Platelet receptor polymorphisms of glycoprotein (GP) Ibα VNTR, GPIIb-IIIa (HPA-1), and GPIa C 807 T and the risk of premature myocardial infarction.  Blood. 2003;  102 293a
  • 39 Zotz R B, Klein M, Scharf R E et al. Prospective analysis after coronary-artery bypass grafting: platelet GPIIIa polymorphism (HPA-1b/PlA2) is a risk factor for bypass occlusion, myocardial infarction, and death.  Thromb Haemost. 2000;  83 404-407
  • 40 Stoldt V R, Peveling J, Scharf R E et al. Evaluation of platelet thrombus formation under flow.  Blood. 2005;  106 70b-71b
  • 41 Scharf R E, Gyenes M, Hasse M et al. Enhanced outside-in signaling related to the Pro33 (HPA-1b) variant of platelet integrin αIIbβ3.  J Thromb Haemost. 2009;  7 PP-WE-862
  • 42 Scharf R E, Hasse M, Reiff E et al. CD40 ligand (CD40L) increases platelet thrombus stability and outside-in signaling through integrin αIIb&beta3.  J Thromb Haemost. 2009;  7 AS-TH-060
  • 43 Zotz R B, Müller C, Scharf R E et al. Glycoprotein Ia 8007TT and human platelet antigen 1b (HPA-1b) are risk determinants for platelet thrombogenicity: a model for discrimination of risk factors for thrombogenicity versus atherosclerosis.  Blood. 2000;  96 535a
  • 44 Greinacher A, Selleng K. Thrombocytopenia in the intensive care unit patient. Hematology.  American Society of Hematology Education Program. 2010;  30 135-143
  • 45 Lo G K, Juhl D, Warkentin T E et al. Evaluation of pretest clinical score (4T’s) for the diagnosis of heparin-induced thrombocytopenia in two clinical settings.  J Thromb Haemost. 2006;  4 759-765
  • 46 Melchor J P, Strickland S. Tissue Plasminogen activator in central nervous system physiology and pathology.  Thromb Haemost. 2005;  93 655-660
  • 47 Meltzer M E, Doggen C J, Groot de P G et al. Fibrinolysis and the risk of venous or arterial thrombosis.  Curr Opin Hematol. 2007;  14 242-248

Prof. Rüdiger Eberhard Scharf

Institut für Hämostaseologie, Hämotherapie und Transfusionsmedizin, Universitätsklinikum Düsseldorf, Heinrich-Heine-Universität

Moorenstraße 5

40225 Düsseldorf

Email: rscharf@uni-duesseldorf.de