Horm Metab Res 2010; 42(7): 483-490
DOI: 10.1055/s-0030-1249103
Original Basic

© Georg Thieme Verlag KG Stuttgart · New York

Leptin Treatment During Lactation Programs Leptin Synthesis, Intermediate Metabolism, and Liver Microsteatosis in Adult Rats

I. H. Trevenzoli1 , A. L. Rodrigues1 , E. Oliveira1 , A. A. Thole2 , L. Carvalho2 , M. S. Figueiredo1 , F. P. Toste1 , J. F. N. Neto1 , M. C. F. Passos1 , 3 , P. C. Lisboa1 , E. G. Moura1
  • 1Departamento Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
  • 2Departamento Histologia, Instituto de Biologia Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
  • 3Departamento Nutrição Aplicada, Instituto de Nutrição, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
Further Information

Publication History

received 26.11.2009

accepted 11.02.2010

Publication Date:
25 March 2010 (online)

Abstract

Epidemiological and experimental studies have associated development of metabolic syndrome with stressful events (nutritional, hormonal, or environmental) in early life. This phenomenon is known as programing and changes in adipokines levels in early life, especially leptin, seem to be involved with its development. We have shown that neonatal hyperleptinemia on lactation programs for leptin resistance, hyperthyroidism, and higher corticosterone and catecholamines levels with cardiovascular consequences. In the present study, we evaluated the effect of hyperleptinemia during lactation on the glucose and lipid metabolism and liver morphology of adult rats, which were saline or leptin-treated (8 μg/100 g of body weight) daily, for the first 10 days of life. Leptin group had lower body mass during treatment, but higher body mass and hyperleptinemia at adulthood, without difference in fat mass. We showed that the probable source of hyperleptinemia is the higher leptin content in the subcutaneous adipose tissue. The programed rats showed hyperinsulinemia and hypoadiponectinemia with higher expression of the hypothalamic Suppressor of Cytokine Signaling 3 (SOCS3), suggesting insulin resistance. Besides, they presented higher liver glycogen and hypertriglyceridemia. We also observed liver microsteatosis in the leptin-programed adult rats. Our data show that neonatal hyperleptinemia alters glucose metabolism, which seems to be partially compensated by the hyperinsulinemia. However, changes in the lipid metabolism are not compensated. It is probable that these changes induced by neonatal hyperleptinemia result from a selective tissue specific resistance both to insulin and leptin at adulthood, and the increase of SOCS3 may play an important role in this process.

References

  • 1 de Moura EG, Passos MC. Neonatal programming of body weight regulation and energetic metabolism.  Biosci Rep. 2005;  25 251-269
  • 2 Moura EG, Santos RS, Lisboa PC, Alves SB, Bonomo IT, Fagundes AT, Oliveira E, Passos MC. Thyroid function and body weight programming by neonatal hyperthyroidism in rats –the role of leptin and deiodinase activities.  Horm Metab Res. 2008;  40 1-7
  • 3 Plagemann A, Harder T. Hormonal programming in perinatal life: leptin and beyond.  Br J Nutr. 2008;  1-2
  • 4 McMillen IC, Adam CL, Muhlhausler BS. Early origins of obesity: programming the appetite regulatory system.  J Physiol. 2005;  565 9-17
  • 5 Barker DJ. The developmental origins of adult disease.  J Am Coll Nutr. 2004;  23 S588-S595
  • 6 Chehab FF. Obesity and lipodystrophy – where do the circles intersect?.  Endocrinology. 2008;  149 925-934
  • 7 Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism.  Nature. 2001;  414 799-806
  • 8 Ahima RS, Antwi DA. Brain regulation of appetite and satiety.  Endocrinol Metab Clin North Am. 2008;  37 811-823
  • 9 Carvalheira JB, Torsoni MA, Ueno M, Amaral ME, Araujo EP, Velloso LA, Gontijo JA, Saad MJ. Cross-talk between the insulin and leptin signaling systems in rat hypothalamus.  Obes Res. 2005;  13 48-57
  • 10 Howard JK, Flier JS. Attenuation of leptin and insulin signaling by SOCS proteins.  Trends Endocrinol Metab. 2006;  17 365-371
  • 11 Bjorbaek C, Kahn BB. Leptin signaling in the central nervous system and the periphery.  Recent Prog Horm Res. 2004;  59 305-331
  • 12 Oh DK, Ciaraldi T, Henry RR. Adiponectin in health and disease.  Diabetes Obes Metab. 2007;  9 282-289
  • 13 Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors.  Endocr Rev. 2005;  26 439-451
  • 14 Hara K, Yamauchi T, Kadowaki T. Adiponectin: an adipokine linking adipocytes and type 2 diabetes in humans.  Curr Diab Rep. 2005;  5 136-140
  • 15 Teixeira C, Passos M, Ramos C, Dutra S, Moura E. Leptin serum concentration, food intake and body weight in rats whose mothers were exposed to malnutrition during lactation.  J Nutr Biochem. 2002;  13 493-498
  • 16 Bonomo IT, Lisboa PC, Passos MC, Pazos-Moura CC, Reis AM, Moura EG. Prolactin inhibition in lactating rats changes leptin transfer through the milk.  Horm Metab Res. 2005;  37 220-225
  • 17 Lisboa PC, Passos MC, Dutra SC, Bonomo IT, Denolato AT, Reis AM, Moura EG. Leptin and prolactin, but not corticosterone, modulate body weight and thyroid function in protein-malnourished lactating rats.  Horm Metab Res. 2006;  38 295-299
  • 18 de Oliveira Cravo C, Teixeira CV, Passos MC, Dutra SC, de Moura EG, Ramos C. Leptin treatment during the neonatal period is associated with higher food intake and adult body weight in rats.  Horm Metab Res. 2002;  34 400-405
  • 19 Yura S, Itoh H, Sagawa N, Yamamoto H, Masuzaki H, Nakao K, Kawamura M, Takemura M, Kakui K, Ogawa Y, Fujii S. Role of premature leptin surge in obesity resulting from intrauterine undernutrition.  Cell Metab. 2005;  1 371-378
  • 20 Attig L, Solomon G, Ferezou J, Abdennebi-Najar L, Taouis M, Gertler A, Djiane J. Early postnatal leptin blockage leads to a long-term leptin resistance and susceptibility to diet-induced obesity in rats.  Int J Obes (Lond). 2008;  32 1153-1160
  • 21 Vickers MH, Gluckman PD, Coveny AH, Hofman PL, Cutfield WS, Gertler A, Breier BH, Harris M. The effect of neonatal leptin treatment on postnatal weight gain in male rats is dependent on maternal nutritional status during pregnancy.  Endocrinology. 2008;  149 1906-1913
  • 22 Pereira-Toste F, Toste FP, Oliveira E, Trotta PA, Lisboa PC, de Moura EG, Passos MC. Early maternal hyperleptinemia programs adipogenic phenotype in rats.  Horm Metab Res. 2009;  41 874-879
  • 23 Toste FP, de Moura EG, Lisboa PC, Fagundes AT, de Oliveira E, Passos MC. Neonatal leptin treatment programmes leptin hypothalamic resistance and intermediary metabolic parameters in adult rats.  Br J Nutr. 2006;  95 830-837
  • 24 Toste FP, Alves SB, Dutra SC, Bonomo IT, Lisboa PC, Moura EG, Passos MC. Temporal evaluation of the thyroid function of rats programed by leptin treatment on the neonatal period.  Horm Metab Res. 2006;  38 827-831
  • 25 Trevenzoli IH, Valle MM, Machado FB, Garcia RM, Passos MC, Lisboa PC, Moura EG. Neonatal hyperleptinaemia programmes adrenal medullary function in adult rats: effects on cardiovascular parameters.  J Physiol. 2007;  580 629-637
  • 26 Fraga-Marques MC, Moura EG, Claudio-Neto S, Trevenzoli IH, Toste FP, Passos MC, Lisboa PC, Manhaes AC. Neonatal hyperleptinaemia programmes anxiety-like and novelty seeking behaviours but not memory/learning in adult rats.  Horm Behav. 2009;  55 272-279
  • 27 Casimiro-Lopes G, Alves SB, Salerno VP, Passos MC, Lisboa PC, Moura EG. Maximum acute exercise tolerance in hyperthyroid and hypothyroid rats subjected to forced swimming.  Horm Metab Res. 2008;  40 276-280
  • 28 Fagundes AT, Moura EG, Passos MC, Santos-Silva AP, Oliveira ED, Trevenzoli IH, Casimiro-Lopes G, Nogueira-Neto JF, Lisboa PC. Temporal Evaluation of Body Composition, Glucose Homeostasis and Lipid Profile of Male Rats Programmed by Maternal Protein Restriction During Lactation.  Horm Metab Res. 2009;  41 866-873
  • 29 Parrou JL, Francois J. A simplified procedure for a rapid and reliable assay of both glycogen and trehalose in whole yeast cells.  Anal Biochem. 1997;  248 186-188
  • 30 Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.  Anal Biochem. 1976;  72 248-254
  • 31 Mistry AM, Swick A, Romsos DR. Leptin alters metabolic rates before acquisition of its anorectic effect in developing neonatal mice.  Am J Physiol. 1999;  277 R742-R747
  • 32 Djiane J, Attig L. Role of leptin during perinatal metabolic programming and obesity.  J Physiol Pharmacol. 2008;  59 (S 01) 55-63
  • 33 Lee MJ, Fried SK. Integration of hormonal and nutrient signals that regulate leptin synthesis and secretion.  Am J Physiol Endocrinol Metab. 2009;  296 E1230-E1238
  • 34 Bouret SG, Simerly RB. Developmental programming of hypothalamic feeding circuits.  Clin Genet. 2006;  70 295-301
  • 35 Sanchez J, Priego T, Palou M, Tobaruela A, Palou A, Pico C. Oral supplementation with physiological doses of leptin during lactation in rats improves insulin sensitivity and affects food preferences later in life.  Endocrinology. 2008;  149 733-740
  • 36 Ahima RS, Osei SY. Leptin signaling.  Physiol Behav. 2004;  81 223-241
  • 37 Covey SD, Wideman RD, McDonald C, Unniappan S, Huynh F, Asadi A, Speck M, Webber T, Chua SC, Kieffer TJ. The pancreatic beta cell is a key site for mediating the effects of leptin on glucose homeostasis.  Cell Metab. 2006;  4 291-302
  • 38 Vickers MH, Reddy S, Ikenasio BA, Breier BH. Dysregulation of the adipoinsular axis – a mechanism for the pathogenesis of hyperleptinemia and adipogenic diabetes induced by fetal programming.  J Endocrinol. 2001;  170 323-332
  • 39 Lopez-Soriano J, Carbo N, Lopez-Soriano FJ, Argiles JM. Short-term effects of leptin on lipid metabolism in the rat.  FEBS Lett. 1998;  431 371-374
  • 40 Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, Furuyama N, Kondo H, Takahashi M, Arita Y, Komuro R, Ouchi N, Kihara S, Tochino Y, Okutomi K, Horie M, Takeda S, Aoyama T, Funahashi T, Matsuzawa Y. Diet-induced insulin resistance in mice lacking adiponectin/ACRP30.  Nat Med. 2002;  8 731-737
  • 41 Aiston S, Agius L. Leptin enhances glycogen storage in hepatocytes by inhibition of phosphorylase and exerts an additive effect with insulin.  Diabetes. 1999;  48 15-20
  • 42 O’Doherty RM, Anderson PR, Zhao AZ, Bornfeldt KE, Newgard CB. Sparing effect of leptin on liver glycogen stores in rats during the fed-to-fasted transition.  Am J Physiol. 1999;  277 E544-E550
  • 43 Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses?.  Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr Rev. 2000;  21 55-89
  • 44 Bruce CR, Lee JS, Hawley JA. Postexercise muscle glycogen resynthesis in obese insulin-resistant Zucker rats.  J Appl Physiol. 2001;  91 1512-1519
  • 45 Rector RS, Thyfault JP, Wei Y, Ibdah JA. Non-alcoholic fatty liver disease and the metabolic syndrome: an update.  World J Gastroenterol. 2008;  14 185-192
  • 46 Souza-Mello V, Mandarim-de-Lacerda CA, Aguila MB. Hepatic structural alteration in adult programmed offspring (severe maternal protein restriction) is aggravated by post-weaning high-fat diet.  Br J Nutr. 2007;  98 1159-1169
  • 47 Ahima RS, Lazar MA. Adipokines and the peripheral and neural control of energy balance.  Mol Endocrinol. 2008;  22 1023-1031
  • 48 Utzschneider KM, Kahn SE. Review: The role of insulin resistance in nonalcoholic fatty liver disease.  J Clin Endocrinol Metab. 2006;  91 4753-4761

Correspondence

Dr. E. G. Moura

Departamento de Ciências

Fisiológicas – 5° andar

Instituto de Biologia

Universidade do Estado do

Rio de Janeiro

Av. 28 de Setembro

87 Rio de Janeiro

RJ 20551-030

Brazil

Phone: +55/21/2587 6434

Fax: +55/21/2587 6129

Email: egberto@pq.cnpq.br