Int J Sports Med 2010; 31(8): 529-536
DOI: 10.1055/s-0030-1251989
Physiology & Biochemistry

© Georg Thieme Verlag KG Stuttgart · New York

Effects of Altering Pedal Frequency on the Slow Component of Pulmonary V˙O 2 Kinetics and EMG Activity

D. M. Hirai1 , B. T. Roseguini2 , F. Diefenthaeler3 , F. P. Carpes4 , M. A. Vaz5 , E. L. Ferlin2 , J. P. Ribeiro2 , 6 , F. Y. Nakamura1
  • 1State University of Londrina, Department of Physical Education, Londrina, Brazil
  • 2Federal University of Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Exercise Pathophysiology Research Laboratory and Cardiology Division, Porto Alegre, Brazil
  • 3Federal University of Santa Catarina, Centro de Esportes, Biomechanics Laboratory, Florianopólis, Brazil
  • 4Federal University of Pampa, Uruguaiana, Brazil
  • 5Federal University of Rio Grande do Sul, School of Physical Education, Exercise Research Laboratory, Porto Alegre, Brazil
  • 6Federal University of Rio Grande do Sul, Department of Medicine, Faculty of Medicine, Porto Alegre, Brazil
Further Information

Publication History

accepted after revision March 03, 2010

Publication Date:
29 April 2010 (online)

Abstract

This study investigated the effects of pedal frequency on the slow component of pulmonary oxygen uptake (V˙O 2) kinetics during heavy exercise at the same relative intensity. We hypothesized that higher pedal frequency (expected to enhance fast-twitch muscle fiber recruitment) would be associated with greater slow component amplitude (A’s), surface electromyography (normalized root mean square; RMS) and blood lactate concentration ([lactate]). Eight subjects performed square-wave transitions to heavy exercise at 35 and 115 rpm. Furthermore, alternated cadences square-wave transitions (35–115 rpm) were performed to examine the potential effects of additional fast-twitch muscle fiber recruitment on the slow component. Significance was accepted when P<0.05. The A’s was greater at higher cadences (0.58±0.08 and 0.70±0.09 L.min−1 at 115 and 35–115 rpm, respectively) than at 35 rpm (0.35±0.04 L.min−1). Greater EMG increase over time (ΔRMS(10–3 min)) and [lactate] were observed at 115 and 35–115 rpm compared with 35 rpm. There was a significant correlation between A’s and overall ΔRMS(10–3 min) for all pedal frequencies combined (r=0.63; P=0.001). Pedal frequency had no effect on time constants or time delays. These findings are consistent with the concept that progressive recruitment of muscle fibers is associated with the V˙O 2 slow component.

References

  • 1 Ahlquist LE, Bassett DR Jr, Sufit R, Nagle FJ, Thomas DP. The effect of pedaling frequency on glycogen depletion rates in type I and type II quadriceps muscle fibers during submaximal cycling exercise.  Eur J Appl Physiol. 1992;  65 360-364
  • 2 Altenburg TM, Degens H, van Mechelen W, Sargeant AJ, de Haan A. Recruitment of single muscle fibers during submaximal cycling exercise.  J Appl Physiol. 2007;  103 1752-1756
  • 3 Armstrong RB, Peterson DF. Patterns of glycogen loss in muscle fibers: response to arterial occlusion during exercise.  J Appl Physiol. 1981;  51 552-556
  • 4 Barstow TJ, Jones AM, Nguyen PH, Casaburi R. Influence of muscle fiber type and pedal frequency on oxygen uptake kinetics of heavy exercise.  J Appl Physiol. 1996;  81 1642-1650
  • 5 Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange.  J Appl Physiol. 1986;  60 2020-2027
  • 6 Bernasconi S, Tordi N, Perrey S, Parratte B, Monnier G. Is the VO2 slow component in heavy arm-cranking exercise associated with recruitment of type II muscle fibers as assessed by an increase in surface EMG?.  Appl Physiol Nutr Metab. 2006;  31 414-422
  • 7 Cannon DT, Kolkhorst FW, Cipriani DJ. Electromyographic data do not support a progressive recruitment of muscle fibers during exercise exhibiting a VO2 slow component.  J Physiol Anthropol. 2007;  26 541-546
  • 8 Coyle EF, Sidossis LS, Horowitz JF, Beltz JD. Cycling efficiency is related to the percentage of type I muscle fibers.  Med Sci Sports Exerc. 1992;  24 782-788
  • 9 Crow MT, Kushmerick MJ. Chemical energetics of slow- and fast-twitch muscles of the mouse.  J Gen Physiol. 1982;  79 147-166
  • 10 DiMenna FJ, Wilkerson DP, Burnley M, Bailey SJ, Jones AM. Influence of extreme pedal rates on pulmonary O2 uptake kinetics during transitions to high-intensity exercise from an elevated baseline.  Respir Physiol Neurobiol. 2009;  169 16-23
  • 11 DiMenna FJ, Wilkerson DP, Burnley M, Bailey SJ, Jones AM. Influence of priming exercise on pulmonary O2 uptake kinetics during transitions to high-intensity exercise at extreme pedal rates.  J Appl Physiol. 2009;  106 432-442
  • 12 Farina D, Merletti R, Enoka RM. The extraction of neural strategies from the surface EMG.  J Appl Physiol. 2004;  96 1486-1495
  • 13 Ferguson RA, Aagaard P, Ball D, Sargeant AJ, Bangsbo J. Total power output generated during dynamic knee extensor exercise at different contraction frequencies.  J Appl Physiol. 2000;  89 1912-1918
  • 14 Ferguson RA, Ball D, Krustrup P, Aagaard P, Kjær M, Sargeant AJ, Hellsten Y, Bangsbo J. Muscle oxygen uptake and energy turnover during dynamic exercise at different contraction frequencies in humans.  J Physiol. 2001;  536 261-271
  • 15 Ferreira LF, Lutjemeier BJ, Townsend DK, Barstow TJ. Effects of pedal frequency on estimated muscle microvascular O2 extraction.  Eur J Appl Physiol. 2006;  96 558-563
  • 16 Gaesser GA, Poole DC. The slow component of oxygen uptake kinetics in humans.  Exerc Sport Sci Rev. 1996;  24 35-71
  • 17 Gladden LB. Lactic acid: New roles in a new millennium.  Proc Natl Acad Sci USA. 2001;  98 395-397
  • 18 Gollnick PD, Armstrong RB, Saubert CW, Piehl K, Saltin B. Enzyme activity and fiber composition in skeletal muscle of untrained and trained men.  J Appl Physiol. 1972;  33 312-319
  • 19 Gollnick PD, Piehl K, Saltin B. Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates.  J Physiol. 1974;  241 45-57
  • 20 Harriss DJ, Atkinson G. International Journal of Sports Medicine – ethical standards in sport and exercise science research.  Int J Sports Med. 2009;  30 701-702
  • 21 Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures.  J Electromyogr Kinesiol. 2000;  10 361-374
  • 22 Hoelting BD, Scheuermann BW, Barstow TJ. Effect of contraction frequency on leg blood flow during knee extension exercise in humans.  J Appl Physiol. 2001;  91 671-679
  • 23 Hug F, Dorel S. Electromyographic analysis of pedaling: a review.  J Electromyogr Kinesiol. 2009;  19 182-198
  • 24 Hughes EF, Turner SC, Brooks GA. Effects of glycogen depletion and pedaling speed on “anaerobic threshold”.  J Appl Physiol. 1982;  52 1598-1607
  • 25 Hughson RL. Exploring cardiorespiratory control mechanisms through gas exchange dynamics.  Med Sci Sports Exerc. 1990;  22 72-79
  • 26 Jones AM, Burnley M. Effect of exercise modality on VO2 kinetics.. In: Jones AM, Poole DC, (eds.) Oxygen Uptake Kinetics in Sport, Exercise and Medicine. 1st edition New York: Routledge; 2005: 95-114
  • 27 Koga S, Shiojiri T, Shibasaki M, Fukuba Y, Fukuoka Y, Kondo N. Kinetics of oxygen uptake and cardiac output at onset of arm exercise.  Respir Physiol. 1996;  103 195-202
  • 28 Krustrup P, Soderlund K, Mohr M, Bangsbo J. Slow-twitch fiber glycogen depletion elevates moderate-exercise fast-twitch fiber activity and O2 uptake.  Med Sci Sports Exerc. 2004;  36 973-982
  • 29 Krustrup P, Soderlund K, Mohr M, Bangsbo J. The slow component of oxygen uptake during intense, sub-maximal exercise in man is associated with additional fibre recruitment.  Pflugers Arch. 2004;  447 855-866
  • 30 MacIntosh BR, Neptune RR, Horton JF. Cadence, power, and muscle activation in cycle ergometry.  Med Sci Sports Exerc. 2000;  32 1281-1287
  • 31 Mannion AF, Jakeman PM, Willan PL. Skeletal muscle buffer value, fibre type distribution and high intensity exercise performance in man.  Exp Physiol. 1995;  80 89-101
  • 32 McDaniel J, Durstine JL, Hand GA, Martin JC. Determinants of metabolic cost during submaximal cycling.  J Appl Physiol. 2002;  93 823-828
  • 33 Migita T, Hirakoba K. Effect of different pedal rates on oxygen uptake slow component during constant-load cycling exercise.  J Sports Med Phys Fitness. 2006;  46 189-196
  • 34 Neptune RR, Kautz SA, Hull ML. The effect of pedaling rate on coordination in cycling.  J Biomech. 1997;  30 1051-1058
  • 35 Osada T, Radegran G. Femoral artery inflow in relation to external and total work rate at different knee extensor contraction rates.  J Appl Physiol. 2002;  92 1325-1330
  • 36 Perrey S, Betik A, Candau R, Rouillon JD, Hughson RL. Comparison of oxygen uptake kinetics during concentric and eccentric cycle exercise.  J Appl Physiol. 2001;  91 2135-2142
  • 37 Poole DC, Gladden LB, Kurdak S, Hogan MC. L-(+)-lactate infusion into working dog gastrocnemius: no evidence lactate per se mediates VO2 slow component.  J Appl Physiol. 1994;  76 787-792
  • 38 Poole DC, Schaffartzik W, Knight DR, Derion T, Kennedy B, Guy HJ, Prediletto R, Wagner PD. Contribution of exercising legs to the slow component of oxygen uptake kinetics in humans.  J Appl Physiol. 1991;  71 1245-1260
  • 39 Pringle JS, Doust JH, Carter H, Tolfrey K, Campbell IT, Sakkas GK, Jones AM. Oxygen uptake kinetics during moderate, heavy and severe intensity “submaximal” exercise in humans: the influence of muscle fibre type and capillarisation.  Eur J Appl Physiol. 2003;  89 289-300
  • 40 Pringle JS, Doust JH, Carter H, Tolfrey K, Jones AM. Effect of pedal rate on primary and slow-component oxygen uptake responses during heavy-cycle exercise.  J Appl Physiol. 2003;  94 1501-1507
  • 41 Rossiter HB, Ward SA, Howe FA, Kowalchuk JM, Griffiths JR, Whipp BJ. Dynamics of intramuscular 31P-MRS Pi peak splitting and the slow components of PCr and O2 uptake during exercise.  J Appl Physiol. 2002;  93 2059-2069
  • 42 Sabapathy S, Schneider DA, Morris NR. The VO2 slow component: relationship between plasma ammonia and EMG activity.  Med Sci Sports Exerc. 2005;  37 1502-1509
  • 43 Sargeant AJ. Human power output and muscle fatigue.  Int J Sports Med. 1994;  15 116-121
  • 44 Saunders MJ, Evans EM, Arngrimsson SA, Allison JD, Warren GL, Cureton KJ. Muscle activation and the slow component rise in oxygen uptake during cycling.  Med Sci Sports Exerc. 2000;  32 2040-2045
  • 45 Scheuermann BW, Hoelting BD, Noble ML, Barstow TJ. The slow component of O2 uptake is not accompanied by changes in muscle EMG during repeated bouts of heavy exercise in humans.  J Physiol. 2001;  531 245-256
  • 46 Shinohara M, Moritani T. Increase in neuromuscular activity and oxygen uptake during heavy exercise.  Ann Physiol Anthropol. 1992;  11 257-262
  • 47 Sjøgaard G, Hansen EA, Osada T. Blood flow and oxygen uptake increase with total power during five different knee-extension contraction rates.  J Appl Physiol. 2002;  93 1676-1684
  • 48 Smith PM, McCrindle E, Doherty M, Price MJ, Jones AM. Influence of crank rate on the slow component of pulmonary O2 uptake during heavy arm-crank exercise.  Appl Physiol Nutr Metab. 2006;  31 292-301
  • 49 Vercruyssen F, Missenard O, Brisswalter J. Relationship between oxygen uptake slow component and surface EMG during heavy exercise in humans: influence of pedal rate.  J Electromyogr Kinesiol. 2009;  19 676-684
  • 50 Wasserman K, Whipp BJ, Koyl SN, Beaver WL. Anaerobic threshold and respiratory gas exchange during exercise.  J Appl Physiol. 1973;  35 236-243
  • 51 Zoladz JA, Gladden LB, Hogan MC, Nieckarz Z, Grassi B. Progressive recruitment of muscle fibers is not necessary for the slow component of VO2 kinetics.  J Appl Physiol. 2008;  105 575-580
  • 52 Zoladz JA, Rademaker AC, Sargeant AJ. Human muscle power generating capability during cycling at different pedalling rates.  Exp Physiol. 2000;  85 117-124

Correspondence

Prof. Fábio Yuzo Nakamura

Universidade Estadual de Londrina

Departamento de Educação Física

Rodovia Celso Garcia Cid km 380

Campus Universitário

86015-990 Londrina

Brazil

Phone: +55/43/3371 4238

Fax: +55/43/3371 4144

Email: fabioy_nakamura@yahoo.com.br