Subscribe to RSS
DOI: 10.1055/s-0030-1259298
The Tertiary Amino Effect: An Efficient Method for the Synthesis of α-Carbolines
Publication History
Publication Date:
05 January 2011 (online)

Abstract
Functionalized annelated α-carbolines have been synthesized from oxindole following a tertiary amino effect reaction strategy.
Key words
α-carboline - oxindole - tertiary amino effect - α-halo aldehyde
-
1a
Venkat RG,Qi L,Pierce M,Robbins PB,Sahasrabudhe SR, andSelliah R. inventors; WO 2007076085. -
1b
Arakawa H,Monden Y,Nakatsuru Y, andKodera T. inventors; WO 2003080077. -
1c
Burstein HJ.Overmoyer B.Gelman R.Silverman P.Savoie J.Clarke K.Dumadag L.Younger J.Ivy P.Winer EP. Invest. New Drugs 2007, 25: 161 -
2a
Li X.Vince R. Bioorg. Med. Chem. 2006, 14: 2942 -
2b
Zhao G.Wang C.Liu C.Lou H. Mini-Rev. Med. Chem. 2007, 7: 707 -
3a
Gelbard HA,Maggirwar SB,Dewhurst S, andSchifitto GP. inventors; WO 2007076372. -
3b
Mellman I, andJiang A. inventors; WO 2007075911. -
4a
Paolini L. Sci. Rep. Ist. Super. Sanita 1961, 1: 86 -
4b
Okamoto T,Akase T,Izumi S,Inaba S, andYamamoto H. inventors; JP 7220196. ; Chem. Abstr. 1972, 77, 152142 -
4c
Winter J, andDi Mola N. inventors; West German Patent 2442513. ; Chem. Abstr. 1975, 82, 156255 -
5a
Stubbs MC.Armstrong SA. Curr. Drug Targets 2007, 8: 703 -
5b
Shenoy S.Vasania VS.Gopal M.Mehta A. Toxicol. Appl. Pharmacol. 2007, 222: 80 -
5c
Seedhouse CH.Hunter HM.Lloyd-Lewis B.Massip A.-M.Pallis M.Carter GI.Grundy M.Shang S.Russel NH. Leukemia 2006, 20: 2130 -
6a
Joseph J,Meijer L, andLiger F. inventors; FR2876377. -
6b
Das S,Brown JW,Dong Q,Gong X,Kaldor SW,Liu Y,Paraselli BR,Scorah N,Stafford JA, andWallace MB. inventors; WO 2007044779. - 7
Fong TM,Erondu NE,Macneil DJ,Mcintyre JH, andVander Pleog LHT. inventors; WO 2004110368. -
8a
Molina P.Fresneda PM. Synthesis 1989, 878 -
8b
Beccalli EM.Clerici F.Marchesini A. Tetrahedron 2001, 57: 4787 -
8c
Erba E.Gelmi ML.Pocar D. Tetrahedron 2000, 56: 9991 -
8d
Ono A.Narasaka K. Chem. Lett. 2001, 146 -
8e
Achab S.Guyor M.Potier P. Tetrahedron Lett. 1995, 36: 2615 -
9a
Kaczmarek L.Peczynka-Czoch W.Osiadacz J.Mordarski M.Sokalski WA.Boratynski J.Marcinkovska E.Glazman-Kusnierczyk H.Radzikowski C. Bioorg. Med. Chem. Lett. 1999, 7: 22457 -
9b
Laurson W.Perkin WH.Robinson R. J. Chem. Soc. 1924, 125: 626 -
9c
Kaczmarek L.Balicki R.Nantka-Namirski P.Peczynska-Czoch W.Mordarski M. Arch. Pharm. (Weinheim, Ger.) 1988, 321: 463 -
9d
Mehta LK.Parrick J.Payne F. J. Chem. Soc., Perkin. Trans. 1 1993, 1261 -
10a
Okuda S.Robinson MM. J. Am. Chem. Soc. 1959, 81: 740 -
10b
Yamazaki T.Matoba K.Imoto S.Terashima M. Chem. Pharm. Bull. 1976, 24: 3011 -
11a
Tahri A.Buysens KJ.Van der Eycken EV.Vanderberghe DM.Hoornaert GJ. Tetrahedron 1998, 54: 13211 -
11b
Molina P.Alajarín M.Vidal A.Sánchez-Aranda P. J. Org. Chem. 1992, 57: 929 -
11c
Forbes IT.Johnson CN.Thompson M. Synth. Commun. 1993, 23: 715 - 12
Rocca P.Marsais F.Godard A.Queguiner G. Tetrahedron 1993, 49: 49 - 13
Vera-Luque P.Alajarin R.Alvarez-Builla J.Vaquero JJ. Org. Lett. 2006, 8: 415 - 14
Meth-Cohn O.Suschitzky H. Adv. Heterocycl. Chem. 1972, 14: 211 -
15a
Verboom W.Reinhoudt DN. Recl. Trav. Chim. Pays-Bas 1990, 109: 311 -
15b
Verboom W.Reinhoudt DN.Visser R.Harkema S. J. Org. Chem. 1984, 49: 269 -
16a
Tverdokhlebov AV.Gorulya AP.Tolmachev AA.Kostyuk AN.Chernega AN.Rusanov EB. Tetrahedron 2006, 62: 9146 -
16b
Rabong C.Hametner C.Mereiter K.Kartsev VG.Jordis U. Heterocycles 2008, 75: 799 -
16c
Ryabukhin SV.Plaskon AS.Volochnyuk DM.Pipko SE.Tolmachev AA. Synth. Commun. 2008, 38: 3032 -
17a
Ojea V.Maestro MA.Quintela JM. Tetrahedron 1993, 49: 2691 -
17b
Ojea V.Muinelo I.Figueroa MC.Ruiz M.Quintela JM. Synlett 1995, 622 -
17c
Ojea V.Muinelo I.Quintela JM. Tetrahedron 1998, 54: 927 -
17d
Devi I.Baruah B.Bhuyan PJ. Synlett 2006, 2593 - 18
Vlaskina NM.Suzdalev KF.Babakova MN.Mezheritskii VV.Kartsev VG. Russ. Chem. Bull. 2006, 55: 384 - 19
Sandip Murarka S.Zhang C.Konieczynska MD.Seidel D. Org. Lett. 2009, 11: 129 -
20a
Baruah B.Bhuyan PJ. Tetrahedron 2009, 65: 7099 -
20b
Deb ML.Majumder S.Baruah B.Bhuyan PJ. Synthesis 2010, 929 -
20c
Deb ML.Bhuyan PJ. Synlett 2008, 325 -
20d
Deb ML.Bhuyan PJ. Synthesis 2008, 2891 -
20e
Deb ML.Baruah B.Bhuyan PJ. Synthesis 2007, 28 - 22
Soledade M.Pedras C.Suchy M.Ahiahonu WK. Org. Biomol. Chem. 2006, 4: 691
References and Notes
Synthesis of 2-Chloro-3-formylindole (2)
To
a mixture of anhyd DMF (10 mL) and anhyd CHCl3 (10 mL)
was added phosphorous oxychloride (10 mL) over 15 min. To this a
solution of oxindole 1 (3.2 g, 24 mmol)
and pyridine (5 mL), both in anhyd CHCl3 (25mL), was
slowly added. The reaction mixture was kept for 48 h at r.t. and
then poured into ice-cold H2O (100 mL). The solid compound 2 formed was filtered and dried. Yield
2.48 g (80%); mp 167-168 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 7.22-7.38
(m, 2 H), 7.95-7.99 (m, 1 H), 8.15-8.18 (m, 1
H), 9.61 (s, 1 H), 10.10 (s, 1 H).
Synthesis
of 1-(
tert
-Butoxycarbonyl)-2-chloro-3-formylindole (3)
Equimolar
amounts of 2-chloro-3-formylindole (2;
10 mmol, 1.79 g) and Boc2O (10 mmol, 2.18 g) were stirred
in the presence of catalytic amount of DMAP (0.12 g) and Et3N (0.10
g) at 0-5 ˚C for 1 h using CH2Cl2 (15
mL) as solvent. The solvent was evaporated under reduced pressure,
and
the solid compound obtained was purified
by column chromatography using PE-EtOAc (9:1) as eluent.
The product 3 was obtained in 70% yield
(1.20 g) as colorless crystals; mp 89-90 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 1.72 (s,
9 H), 7.26-7.40 (m, 2 H), 8.02-8.06 (m, 1 H),
8.27-8.30 (m, 1 H), 10.29 (s, 1 H).
Synthesis of 1-(
tert
-Butoxycarbonyl)-2-diethylamino-3-formylindole (5a)
Equimolar
amounts of 3 (10 mmol 2.79 g), Et2NH
(4a; 10 mmol, 0.72 g), and Et3N
(10 mmol, 1.01g) were treated at r.t. for 4 h using CH2Cl2 (10
mL) as solvent. The solvent was evaporated under reduced pressure,
and the compound 5a obtained was purified
by preparative TLC using PE-EtOAc (8:2) as eluent. The
compound was not crystallized and used directly in the next step;
yield 1.98 g (71%). ¹H NMR (300 MHz,
CDCl3): δ = 1.17 (t, 6 H), 1.71 (s,
9 H), 3.43 (q, 4 H), 7.22-7.31 (m, 2 H), 7.82-7.85
(m, 1 H), 8.20-8.23 (m, 1 H), 10.16 (s, 1 H). Similarly
compounds 5b-e were
synthesized and characterized.
Synthesis
of Compound 7a via Knoevenagel Condensation
To equimolar
amounts of 1-(tert-butoxycarbonyl)-2-diethylamino-3-formylindole
(5a; 5 mmol, 1.5 g) and malononitrile (6a; 5 mmol, 0.33 g) in EtOH (10 mL) was added
a catalytic amount of piperidine (1 drop), and the resulting solution
was stirred for 30 min. The resultant solid was filtered washed
with small amount of EtOH and dried. The bright yellow product 7a was obtained in pure form. Yield 1.20
g (80%); mp 122-123 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 1.18 (t,
6 H), 1.70 (s, 9 H), 3.43 (q, 4 H), 7.26-7.38 (m, 2 H),
7.74 (s, 1 H), 7.82-7.85 (m, 1 H), 7.96-7.98 (m,
1 H).
Synthesis of α-Carboline
8a from 7a under Thermolytic Conditions
Compound 7a (2 mmol, 0.73 g) was heated at 80-90 ˚C
for 1 h using DMF (5 mL) as solvent (the conversion was monitored
by TLC). The reaction mixture was poured into H2O and
the solid filtered off. The compound was purified by column chromatography
using PE-EtOAc (6:4) as eluent to obtain 8a as
a yellow solid; yield 0.62 g (85%); mp 219-220 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 1.25-1.35
(m, 6 H), 1.70 (s, 9 H), 3.48-3.58 (m, 3 H), 4.57 (s, 2
H), 7.15-7.26 (m, 2 H), 7.61-7.65 (m, 2 H). ¹³C
NMR (75 MHz, DMSO): δ = 13.46, 14.20, 28.42, 39.77,
40.05, 40.33, 47.31, 61.82, 99.22, 110.46, 119.23, 121.34, 121.95,
122.74, 125.45, 135.24, 148.74, 155.37. IR: νmax = 2210,
1736, 1631, 1540. MS: m/z = 363 [M+].
Anal. Calcd (%) for C21H23N4O2:
C, 69.42; H, 6.33; N 15.42. Found: C, 69.65; H, 5.98; N, 15.56.