Synlett 2011(2): 173-176  
DOI: 10.1055/s-0030-1259298
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

The Tertiary Amino Effect: An Efficient Method for the Synthesis of α-Carbolines

Swarup Majumder, Pulak J. Bhuyan*
Medicinal Chemistry Division, North East Institute of Science & Technology, Jorhat 785006, Assam, India
Fax: +91(376)2370011; e-Mail: pulak_jyoti@yahoo.com;
Further Information

Publication History

Received 2 August 2010
Publication Date:
05 January 2011 (online)

Abstract

Functionalized annelated α-carbolines have been synthesized from oxindole following a tertiary amino effect reaction strategy.

    References and Notes

  • 1a Venkat RG, Qi L, Pierce M, Robbins PB, Sahasrabudhe SR, and Selliah R. inventors; WO  2007076085. 
  • 1b Arakawa H, Monden Y, Nakatsuru Y, and Kodera T. inventors; WO  2003080077. 
  • 1c Burstein HJ. Overmoyer B. Gelman R. Silverman P. Savoie J. Clarke K. Dumadag L. Younger J. Ivy P. Winer EP. Invest. New Drugs  2007,  25:  161 
  • 2a Li X. Vince R. Bioorg. Med. Chem.  2006,  14:  2942 
  • 2b Zhao G. Wang C. Liu C. Lou H. Mini-Rev. Med. Chem.  2007,  7:  707 
  • 3a Gelbard HA, Maggirwar SB, Dewhurst S, and Schifitto GP. inventors; WO  2007076372. 
  • 3b Mellman I, and Jiang A. inventors; WO  2007075911. 
  • 4a Paolini L. Sci. Rep. Ist. Super. Sanita  1961,  1:  86 
  • 4b Okamoto T, Akase T, Izumi S, Inaba S, and Yamamoto H. inventors; JP  7220196.  ; Chem. Abstr. 1972, 77, 152142
  • 4c Winter J, and Di Mola N. inventors; West German Patent  2442513.  ; Chem. Abstr. 1975, 82, 156255
  • 5a Stubbs MC. Armstrong SA. Curr. Drug Targets  2007,  8:  703 
  • 5b Shenoy S. Vasania VS. Gopal M. Mehta A. Toxicol. Appl. Pharmacol.  2007,  222:  80 
  • 5c Seedhouse CH. Hunter HM. Lloyd-Lewis B. Massip A.-M. Pallis M. Carter GI. Grundy M. Shang S. Russel NH. Leukemia  2006,  20:  2130 
  • 6a Joseph J, Meijer L, and Liger F. inventors;  FR2876377. 
  • 6b Das S, Brown JW, Dong Q, Gong X, Kaldor SW, Liu Y, Paraselli BR, Scorah N, Stafford JA, and Wallace MB. inventors; WO  2007044779. 
  • 7 Fong TM, Erondu NE, Macneil DJ, Mcintyre JH, and Vander Pleog LHT. inventors; WO  2004110368. 
  • 8a Molina P. Fresneda PM. Synthesis  1989,  878 
  • 8b Beccalli EM. Clerici F. Marchesini A. Tetrahedron  2001,  57:  4787 
  • 8c Erba E. Gelmi ML. Pocar D. Tetrahedron  2000,  56:  9991 
  • 8d Ono A. Narasaka K. Chem. Lett.  2001,  146 
  • 8e Achab S. Guyor M. Potier P. Tetrahedron Lett.  1995,  36:  2615 
  • 9a Kaczmarek L. Peczynka-Czoch W. Osiadacz J. Mordarski M. Sokalski WA. Boratynski J. Marcinkovska E. Glazman-Kusnierczyk H. Radzikowski C. Bioorg. Med. Chem. Lett.  1999,  7:  22457 
  • 9b Laurson W. Perkin WH. Robinson R. J. Chem. Soc.  1924,  125:  626 
  • 9c Kaczmarek L. Balicki R. Nantka-Namirski P. Peczynska-Czoch W. Mordarski M. Arch. Pharm. (Weinheim, Ger.)  1988,  321:  463 
  • 9d Mehta LK. Parrick J. Payne F. J. Chem. Soc., Perkin. Trans. 1  1993,  1261 
  • 10a Okuda S. Robinson MM. J. Am. Chem. Soc.  1959,  81:  740 
  • 10b Yamazaki T. Matoba K. Imoto S. Terashima M. Chem. Pharm. Bull.  1976,  24:  3011 
  • 11a Tahri A. Buysens KJ. Van der Eycken EV. Vanderberghe DM. Hoornaert GJ. Tetrahedron  1998,  54:  13211 
  • 11b Molina P. Alajarín M. Vidal A. Sánchez-Aranda P. J. Org. Chem.  1992,  57:  929 
  • 11c Forbes IT. Johnson CN. Thompson M. Synth. Commun.  1993,  23:  715 
  • 12 Rocca P. Marsais F. Godard A. Queguiner G. Tetrahedron  1993,  49:  49 
  • 13 Vera-Luque P. Alajarin R. Alvarez-Builla J. Vaquero JJ. Org. Lett.  2006,  8:  415 
  • 14 Meth-Cohn O. Suschitzky H. Adv. Heterocycl. Chem.  1972,  14:  211 
  • 15a Verboom W. Reinhoudt DN. Recl. Trav. Chim. Pays-Bas  1990,  109:  311 
  • 15b Verboom W. Reinhoudt DN. Visser R. Harkema S. J. Org. Chem.  1984,  49:  269 
  • 16a Tverdokhlebov AV. Gorulya AP. Tolmachev AA. Kostyuk AN. Chernega AN. Rusanov EB. Tetrahedron  2006,  62:  9146 
  • 16b Rabong C. Hametner C. Mereiter K. Kartsev VG. Jordis U. Heterocycles  2008,  75:  799 
  • 16c Ryabukhin SV. Plaskon AS. Volochnyuk DM. Pipko SE. Tolmachev AA. Synth. Commun.  2008,  38:  3032 
  • 17a Ojea V. Maestro MA. Quintela JM. Tetrahedron  1993,  49:  2691 
  • 17b Ojea V. Muinelo I. Figueroa MC. Ruiz M. Quintela JM. Synlett  1995,  622 
  • 17c Ojea V. Muinelo I. Quintela JM. Tetrahedron  1998,  54:  927 
  • 17d Devi I. Baruah B. Bhuyan PJ. Synlett  2006,  2593 
  • 18 Vlaskina NM. Suzdalev KF. Babakova MN. Mezheritskii VV. Kartsev VG. Russ. Chem. Bull.  2006,  55:  384 
  • 19 Sandip Murarka S. Zhang C. Konieczynska MD. Seidel D. Org. Lett.  2009,  11:  129 
  • 20a Baruah B. Bhuyan PJ. Tetrahedron  2009,  65:  7099 
  • 20b Deb ML. Majumder S. Baruah B. Bhuyan PJ. Synthesis  2010,  929 
  • 20c Deb ML. Bhuyan PJ. Synlett  2008,  325 
  • 20d Deb ML. Bhuyan PJ. Synthesis  2008,  2891 
  • 20e Deb ML. Baruah B. Bhuyan PJ. Synthesis  2007,  28 
  • 22 Soledade M. Pedras C. Suchy M. Ahiahonu WK. Org. Biomol. Chem.  2006,  4:  691 
21

Synthesis of 2-Chloro-3-formylindole (2) To a mixture of anhyd DMF (10 mL) and anhyd CHCl3 (10 mL) was added phosphorous oxychloride (10 mL) over 15 min. To this a solution of oxindole 1 (3.2 g, 24 mmol) and pyridine (5 mL), both in anhyd CHCl3 (25mL), was slowly added. The reaction mixture was kept for 48 h at r.t. and then poured into ice-cold H2O (100 mL). The solid compound 2 formed was filtered and dried. Yield 2.48 g (80%); mp 167-168 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 7.22-7.38 (m, 2 H), 7.95-7.99 (m, 1 H), 8.15-8.18 (m, 1 H), 9.61 (s, 1 H), 10.10 (s, 1 H).
Synthesis of 1-( tert -Butoxycarbonyl)-2-chloro-3-formylindole (3) Equimolar amounts of 2-chloro-3-formylindole (2; 10 mmol, 1.79 g) and Boc2O (10 mmol, 2.18 g) were stirred in the presence of catalytic amount of DMAP (0.12 g) and Et3N (0.10 g) at 0-5 ˚C for 1 h using CH2Cl2 (15 mL) as solvent. The solvent was evaporated under reduced pressure, and ­
the solid compound obtained was purified by column chromatography using PE-EtOAc (9:1) as eluent. The product 3 was obtained in 70% yield (1.20 g) as colorless crystals; mp 89-90 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 1.72 (s, 9 H), 7.26-7.40 (m, 2 H), 8.02-8.06 (m, 1 H), 8.27-8.30 (m, 1 H), 10.29 (s, 1 H).
Synthesis of 1-( tert -Butoxycarbonyl)-2-diethylamino-3-formylindole (5a) Equimolar amounts of 3 (10 mmol 2.79 g), Et2NH (4a; 10 mmol, 0.72 g), and Et3N (10 mmol, 1.01g) were treated at r.t. for 4 h using CH2Cl2 (10 mL) as solvent. The solvent was evaporated under reduced pressure, and the compound 5a obtained was purified by preparative TLC using PE-EtOAc (8:2) as eluent. The compound was not crystallized and used directly in the next step; yield 1.98 g (71%). ¹H NMR (300 MHz, CDCl3): δ = 1.17 (t, 6 H), 1.71 (s, 9 H), 3.43 (q, 4 H), 7.22-7.31 (m, 2 H), 7.82-7.85 (m, 1 H), 8.20-8.23 (m, 1 H), 10.16 (s, 1 H). Similarly compounds 5b-e were synthesized and characterized.
Synthesis of Compound 7a via Knoevenagel Condensation To equimolar amounts of 1-(tert-butoxycarbonyl)-2-diethylamino-3-formylindole (5a; 5 mmol, 1.5 g) and malononitrile (6a; 5 mmol, 0.33 g) in EtOH (10 mL) was added a catalytic amount of piperidine (1 drop), and the resulting solution was stirred for 30 min. The resultant solid was filtered washed with small amount of EtOH and dried. The bright yellow product 7a was obtained in pure form. Yield 1.20 g (80%); mp 122-123 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 1.18 (t, 6 H), 1.70 (s, 9 H), 3.43 (q, 4 H), 7.26-7.38 (m, 2 H), 7.74 (s, 1 H), 7.82-7.85 (m, 1 H), 7.96-7.98 (m, 1 H).
Synthesis of α-Carboline 8a from 7a under Thermolytic Conditions Compound 7a (2 mmol, 0.73 g) was heated at 80-90 ˚C for 1 h using DMF (5 mL) as solvent (the conversion was monitored by TLC). The reaction mixture was poured into H2O and the solid filtered off. The compound was purified by column chromatography using PE-EtOAc (6:4) as eluent to obtain 8a as a yellow solid; yield 0.62 g (85%); mp 219-220 ˚C. ¹H NMR (300 MHz, CDCl3): δ = 1.25-1.35 (m, 6 H), 1.70 (s, 9 H), 3.48-3.58 (m, 3 H), 4.57 (s, 2 H), 7.15-7.26 (m, 2 H), 7.61-7.65 (m, 2 H). ¹³C NMR (75 MHz, DMSO): δ = 13.46, 14.20, 28.42, 39.77, 40.05, 40.33, 47.31, 61.82, 99.22, 110.46, 119.23, 121.34, 121.95, 122.74, 125.45, 135.24, 148.74, 155.37. IR: νmax = 2210, 1736, 1631, 1540. MS: m/z = 363 [M+]. Anal. Calcd (%) for C21H23N4O2: C, 69.42; H, 6.33; N 15.42. Found: C, 69.65; H, 5.98; N, 15.56.