Subscribe to RSS
DOI: 10.1055/s-0030-1260933
Efficient Synthesis of Tetrahydroxylated Pyrrolizidines by Nitrone Cycloaddition Leading to Unnatural Stereoisomers of 7-Deoxycasuarine
Publication History
Publication Date:
05 July 2011 (online)
Abstract
A convenient and efficient method has been used for the synthesis of ten new tetrahydroxylated pyrrolizidines 12a,b, 13a-c, 14a,b, and 15a-c starting from sugar-derived cyclic nitrones prepared from d-xylose, d-arabinose, d-ribose, and l-arabinose, through a five-step reaction sequence. Pyrrolizidine 12a is an enantiomer of 7-deoxycasuarine and pyrrolizidine 12b an enantiomer of the as yet unknown 7-deoxyuniflorine A. This method expands the scope of nitrone cycloadditions and is flexible enough for the synthesis of various stereoisomers of highly polyhydroxylated pyrrolizidines.
Key words
sugar-derived cyclic nitrones - cycloaddition - iminosugars - pyrrolizidines - stereoselective synthesis
-
1a
Tyler PC.Winchester BG. In Iminosugars as Glycosidase Inhibitors. Nojirimycin and Beyond.Stütz AE. Wiley-VCH; Weinheim: 1999. -
1b
Asano N.Nash RJ.Molyneux RJ.Fleet GWJ. Tetrahedron: Asymmetry 2000, 11: 1645 - 2
Compain P.Martin OR. Curr. Top. Med. Chem. 2003, 3: 541 -
3a
Pearson MSM.Mathé-Allainmat M.Fargeas J.Lebreton J. Eur. J. Org. Chem. 2005, 2159 -
3b
Watson AA.Fleet GWJ.Asano N.Molyneux RJ.Nash RJ. Phytochemistry 2001, 56: 265 -
3c
Asano N.Kato A.Watson AA. Mini-Rev. Med. Chem. 2001, 1: 145 -
4a
Yoda H. Curr. Org. Chem. 2002, 6: 223 -
4b
Cardona F.Faggi E.Cignori F.Cacciarini M.Goti A. Tetrahedron Lett. 2003, 44: 2318 -
4c
Carmona AT.Whigtman RH.Robina I.Vogel P. Helv. Chim. Acta 2003, 86: 3066 -
4d
Brandi A.Cardona F.Cicchi S.Cordero FM.Goti A. Chem. Eur. J. 2009, 15: 7808 -
4e
Bonaccini C.Chioccioli M.Parmeggiani C.Lo Re D.Soldaini G.Vogel P.Bello C.Goti A.Gratteri P. Eur. J. Org. Chem. 2010, 5574 -
4f
Hu X.-G.Jia Y.-M.Xiang J.Yu C.-Y. Synlett 2010, 982 -
4g
Kubán J.Kolarovič A.Fišera L.Jäger V.Humpa O.Prónayová N. Synlett 2001, 1866 -
4h
Reddy PV.Koóš P.Veyron A.Greene AE.Delair P. Synlett 2009, 1141 -
4i
Tamayo JA.Lo Re D.Sánchez-Cantalejo F. J. Org. Chem. 2009, 74: 5679 -
4j
Desvergnes S.Py S.Vallée Y. J. Org. Chem. 2005, 70: 1459 -
4k
Argyropoulos NG.Gkizis P.Coutoli-Argyropoulos E. Tetrahedron 2008, 64: 8752 -
4l
Delso I.Tejero T.Goti A.Merino P. Tetrahedron 2010, 66: 1220 -
4m
Koch D.Maechling S.Blechert S. Tetrahedron 2007, 63: 7112 - 5
Taylor DL.Nash RJ.Fellows LE.Kang MS.Tyms AS. Antiviral Chem. Chemother. 1992, 3: 273 - 6
Asano N.Kuroi H.Ikeda K.Kizu H.Kameda Y.Kato A.Adachi I.Watson AA.Nash RJ.Fleet GWJ. Tetrahedron: Asymmetry 2000, 11: 1 -
7a
Frederickson M. Tetrahedron 1997, 53: 403 -
7b
Gothelf KV.Jørgensen KA. Chem. Rev. 1998, 98: 863 -
7c
Merino P.Franco S.Merchan FL.Romero P.Tejero T.Uriel TS. Tetrahedron: Asymmetry 2003, 14: 3731 -
7d
Osborn HMI.Gemmel N.Harwood LM.
J. Chem. Soc., Perkin Trans. 1 2002, 2419 -
7e
Koumbis AE.Gallos JK. Curr. Org. Chem. 2003, 7: 585 -
7f
Pellissier H. Tetrahedron 2007, 63: 3235 -
7g
Fišera L. In Topics in Heterocyclic Chemistry. Heterocycles from Carbohydrate PrecursorsEl Ashry ESH. Springer; Berlin: 2007. p.287 -
8a
Kubán J.Blanáriková I.Fišera L.Jarošková L.Fengler-Veith M.Jäger V.Ko˛íšek J.Humpa O.Prónayová N.Langer V. Tetrahedron 1999, 55: 9501 -
8b
Fischer R.Drucková A.Fišera L.Rybár A.Hametner C.Cyrański MK. Synlett 2002, 1113 -
8c
Kubán J.Kolarovič A.Fišera L.Jäger V.Humpa O.Prónayová N.Ertl P. Synlett 2001, 1862 -
8d
Blanáriková-Hlobilová I.Kopaničáková Z.Fišera L.Cyrański MK.Salanski P.Jurczak J.Prónayová N. Tetrahedron 2003, 59: 3333 -
8e
Fischer R.Drucková A.Fišera L.Hametner C. ARKIVOC 2002, (viii): 80 -
8f
Dugovič B.Fišera L.Cyranski MK.Hametner C.Prónayová N.Obranec M. Helv. Chim. Acta 2005, 88: 1432 -
8g
Rehák J.Fišera L.Ko˛íšek J.Perašínová L.Steiner B.Koóš M. ARKIVOC 2008, (viii): 18 -
8h
Rehák J.Fišera L.Podolan G.Ko˛íšek J.Perašínová L. Synlett 2008, 1260 -
8i
Rehák J.Fišera L.Prónayová N. ARKIVOC 2009, (vi): 146 - 9
Wang WB.Huang MH.Li YX.Rui PX.Hu XG.Zhang W.Su JK.Zhang ZL.Zhu JS.Xu WH.Xie XQ.Jia YM.Yu ChI. Synlett 2010, 488 - 10
Denmark SE.Dappen MS.Sear NL.Jacobs RT.
J. Org. Chem. 1990, 112: 3466 - 11
Tamura O.Toyao A.Ishibashi H. Synlett 2002, 1344 - 12
Behr BJ.Erard A.Guillerm G. Eur. J. Org. Chem. 2002, 1256 - 15
Sheldrick GM. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 46: 112 - 16
Brandenburg K. DIAMOND Crystal Impact GbR; Bonn: 2006.
References and Notes
Crystal Data of
Compound 11b
C29H33NO4, M = 459.56,
monoclinic, P21, a = 13.197
(2) Å, b = 6.0914
(4) Å, c = 16.757
(3) Å, V = 1257.0(2) ų, Z = 2, D
x = 1.214
Mg m-³, µ (Cu
Kα) = 0.639 mm-¹, F(000) = 492, colorless
block, 0.152 × 0.228 × 0.860
mm-³, 15292 diffractions measured (R
int = 0.026),
4082 unique, wR2 = 0.0759,
conventional R = 0.0284
on I values of 4032 diffractions with I > 2.0 σ(I), (Δ/σ)max = 0.001, S = 1.039
for all data and 311 parameters. Unit cell determination and intensity
data collection (θmax = 74.87˚)
were performed on a Gemini R diffractometer¹4 at
100 (1) K. Structure solution was done using direct methods¹5 and
refinements were achieved by full-matrix least-squares method¹5 on
F**2. Further details of the crystal structure
investigation can be obtained from the Cambridge Crystallographic
Data Centre, 12 Union Road, Cambridge, CB2 1EZ, UK (CCDC deposition
no. 818367).
Oxford Diffraction(2010). CrysAlis PRO. Oxford Diffraction Ltd, Abingdon, England.
17
Typical Experimental
Procedure for Cycloaddition
The nitrone (5.39 mmol)
was dissolved in THF (50 mL) and methyl acrylate was added (21.56
mmol). The mixture was stirred for 48 h at r.t. The mixture was
then concentrated under reduced pressure, and the residue was purified
by MPLC (EtOAc-hexanes = 33:66).
Representative Data for Products
Compound 9a: [α]D
²5 +41.6
(CHCl3, c 3.04). ¹H
NMR (600 MHz, CDCl3): δ = 7.35-7.23
(m, 15 H, OCH2
Ph), 4.60-4.48 (m,
6 H, OCH
2Ph), 4.29 (m, 1 H,
H-5), 4.04 (dd, 1 H, H-7, J = 3.9,
5.6 Hz), 3.96 (dd, 1 H, H-6, J = 3.9
Hz), 3.75 (m, 2 H, H-3, H-10b), 3.66 (dd, 1 H, H-9b, J = 4.7, 10.0
Hz), 3.60 (dd, 1 H, H-9a, J = 5.6,
10.0 Hz), 3.55 (dd, 1 H, H-10a, J = 4.5,
12.3 Hz), 3.33 (dd, 1 H, H-8, J = 5.6,
10.8 Hz), 2.32 (ddd, 1 H, H-4b, J = 7.3,
8.8, 15.8 Hz), 2.16 (ddd, 1 H, H-4a, J = 5.6,
7.3, 12.6 Hz). ¹³C NMR (75 MHz, CDCl3): δ = 138.2-127.5
(OCH2
Ph), 87.1 (C-6), 83.8
(C-7), 77.2 (C-5), 73.3, 72.3, 71.7 (OCH2Ph),
69.7 (C-9), 69.6 (C-8), 68.5 (C-3), 63.1 (C-10), 35.4 (C-4). IR:
3238, 3032, 2921, 2852, 1496, 1454, 1357, 1143, 1093, 1078, 1025,
738, 695 cm-¹. TOF MS (ESI): m/z calcd for C29H34NO5 [MH+]:
476.2437; found: 476.2433.
Compound 10a: [α]D
²5 +40.0
(CHCl3, c 0.71); mp 93-95 ˚C. ¹H
NMR (300 MHz, CDCl3): δ = 7.37-7.23
(m, 15 H, OCH2
Ph), 4.56-4.50
(m, 6 H, OCH
2Ph), 4.43 (m,
1 H, H-5), 4.24 (m, 2 H, H-10a, H-10b), 4.03 (dd, 1 H, H-7, J = 3.8, 5.8 Hz),
3.96 (dd, 1 H, H-6, J = 3.8
Hz), 3.75 (ddd, 1 H, H-3, J = 3.8,
5.4, 8.9 Hz), 3.65 (dd, 1 H, H-9b, J = 5.0,
9.8 Hz), 3.57 (dd, 1 H, H-9a, J = 5.8,
9.8 Hz), 3.35 (dd, 1 H, H-8, J = 5.8,
10.9 Hz), 3.00 (s, 3 H, OMs), 2.25 (m, 2 H, H-4a,
H-4b). ¹³C
NMR (75 MHz, CDCl3) δ = 138.1-127.5 (OCH2
Ph), 86.9 (C-6), 83.9 (C-7), 74.3 (C-5),
73.2, 72.1, 71.8 (OCH2Ph),
70.0 (C-8), 69.7 (C-9), 69.3 (C-10), 68.2 (C-3), 37.5 (OMs), 35.6
(C-4). IR: 3027, 2880, 1497, 1454, 1336, 1178, 1101, 1074, 990,
964, 908, 819, 734, 694, 526 cm-¹.
TOF MS (ESI): m/z calcd for
C30H36NO7S [MH+]: 554.2212;
found: 554.2040.
Compound 11a: [α]D
²5 -10.3
(CHCl3, c 2.10). ¹H
NMR (300 MHz, CDCl3): δ = 7.40-7.24
(m, 15 H, OCH2
Ph), 4.75-4.55 (m,
6 H, OCH
2Ph), 4.36 (m, 1 H,
H-6), 4.19 (dd, 1 H, H-1, J = 6.3
Hz), 3.98 (dd, 1 H, H-2, J = 6.3,
7.6 Hz), 3.63 (dd, 1 H, H-4b, J = 4.3,
9.4 Hz), 3.55 (dd, 1 H, H-4a, J = 6.6,
9.4 Hz), 3.50 (m, 2 H, H-3, H-8), 3.10 (dd, 1 H, H-5b, J = 3.9, 11.1
Hz), 2.95 (dd, 1 H, H-5a, J = 4.0,
11.1 Hz), 2.17 (ddd, 1 H, H-7β, J = 5.5,
8.3, 13.5 Hz), 1.90 (m, 1 H, H-7α). ¹³C NMR
(75 MHz, CDCl3): δ = 140.8-129.0
(OCH2
Ph), 90.9 (C-1), 87.1
(C-2), 74.9 (C-6), 74.7 (C-4), 74.5, 73.8, 73.4 (OCH2Ph),
70.4 (C-3), 68.4 (C-7a), 64.1 (C-5), 41.9 (C-7). IR: 3383, 3030,
2858, 1496, 1453, 1363, 1100, 1067, 1027, 908, 733, 695, 607 cm-¹.
TOF MS (ESI): m/z calcd. for C29H34NO4 [MH+]:
460.2488; found: 460.2181.
Compound 12a: [α]D
²5 -14.2
(MeOH, c 0.26). ¹H
NMR (300 MHz, CD3OD): δ = 4.55
(m, 1 H, H-6), 4.22 (dd, 1 H, H-1, J = 7.9
Hz), 3.87 (m, 3 H, H-2, H-4a, H-4b), 3.71 (m, 1 H, H-7a), 3.48 (m,
1 H, H-3), 3.35 (m, 2 H, H-5a, H-5b), 2.21 (m, 2 H, H-7α,
H-7β). ¹³C NMR (75 MHz, CD3OD): δ = 81.4 (C-1),
76.6 (C-2), 73.5 (C-6), 73.1 (C-3), 69.5 (C-7a), 62.6 (C-5), 60.6
(C-4), 38.4 (C-7). IR: 3269, 2931, 1634, 1435, 1377, 1335, 1097,
1041, 988, 927, 860, 607, 511 cm-¹.
TOF MS (ESI): m/z calcd for
C29H34NO4 [MH+]:
190.1079; found: 190.1042.
Compound 13a: [α]D
²5 +20.4
(MeOH, c 0.83). ¹H
NMR (300 MHz, CD3OD): δ = 4.36
(m, 1 H, H-6), 4.20 (d, 1 H, H-2, J = 2.6
Hz), 4.08 (m, 1 H, H-7a), 3.95 (d, 1 H, H-1, J = 3.8 Hz),
3.85 (dd, 1 H, H-4b, J = 6.4,
11.1 Hz), 3.75 (dd, 1 H, H-4a, J = 6.7,
11.1 Hz), 3.30 (m, 1 H, H-3), 3.20 (dd, 1 H, H-5b, J = 4.1,
11.7 Hz), 2.87 (dd, 1 H, H-5a, J = 3.5,
11.7 Hz), 2.07 (m, 2 H, H-7α, H-7β). ¹³C
NMR (75 MHz, CD3OD):
δ = 79.6
(C-2), 77.0 (C-1), 73.9 (C-6), 72.0 (C-3), 68.9 (C-7a), 62.4 (C-5),
61.4 (C-4), 32.9 (C-7). IR: 3238, 2925, 2871, 1645, 1435, 1034,
1251, 1029, 908, 674, 608, 512 cm-¹.
TOF MS (ESI): m/z calcd for
C29H34NO4 [MH+]:
190.1079; found: 190.1005.
Compound 14a: [α]D
²5 +5.7
(MeOH, c 1.16). ¹H
NMR (300 MHz, CD3OD): δ = 4.51 (m,
1 H, H-6), 4.21 (dd, 1 H, J = 3.6 Hz,
H-2), 3.91 (m, 2 H, H-4a, H-1), 3.75 (m, 2 H, H-4b, H-7a), 3.05
(m, 2 H, H-3, H-5a), 2.95 (dd, 1 H, J = 4.4,
11.4 Hz, H-5b), 2.07 (ddd, 1 H, J = 4.4,
7.3, 12.4 Hz, H-7β), 1.98 (ddd, 1 H, J = 4.4,
7.3, 12.4 Hz, H-7α). ¹³C NMR
(75 MHz, CD3OD): δ = 79.2 (C-1), 75.4
(C-2), 73.3 (C-6), 72.5 (C-3), 68.8 (C-7a), 63.2 (C-5), 61.5 (C-4),
39.1 (C-7). IR: 3329, 3209, 2974, 2910, 2876, 2738, 2475, 2399,
1460, 1323, 1226, 1140, 1098, 1057, 1031, 965, 716, 407 cm-¹.
TOF MS (ESI): m/z calcd for
C29H34NO4 [MH+]:
190.1079; found: 190.1070.
Compound 15a: [α]D
²5 -15.8
(MeOH, c 1.00). ¹H
NMR (600 MHz, CD3OD): δ = 4.55 (m,
1 H, H-6), 4.29 (dt, 1 H, J = 3.9, 8.4
Hz, H-7a), 4.22 (m, 1 H, H-2), 3.96 (d, 1 H, J = 3.9
Hz, H-1), 3.85 (dd, 1 H, J = 5.8,
11.2 Hz, H-4a), 3.80 (dd, 1 H, J = 8.1,
11.2 Hz, H-4b), 3.27 (dd, 1 H, J = 2.7,
11.5 Hz, H-5a), 3.23 (ddd, 1 H, J = 3.4,
5.8, 8.1 Hz, H-3), 2.91 (dd, 1 H, J = 4.2,
11.5 Hz, H-5b), 2.33 (ddd, 1 H, J = 5.1,
7.3, 12.3 Hz, H-7α), 1.77 (ddd, 1 H, J = 3.4,
8.4, 12.3 Hz, H-7β). ¹³C NMR
(150 MHz, CD3OD): δ = 80.2 (C-2), 75.7
(C-1), 74.7 (C-6), 72.5 (C-3), 69.9 (C-8), 63.6 (C-5), 60.5 (C-4),
32.6 (C-7). IR: 3261, 2927, 2866, 2709, 1417, 1309, 1282, 1231, 1036,
972, 916, 901, 773, 719, 592, 538 cm-¹.
TOF MS (ESI): m/z calcd for
C29H34NO4 [MH+]:
190.1079; found: 190.1132.