J Reconstr Microsurg 2010; 26(7): 481-486
DOI: 10.1055/s-0030-1261698
© Thieme Medical Publishers

Femur Flap for Tibial Reconstruction: Percent Circumference Required to Convey a Mechanical Advantage over the Fibula

Genevieve Broderick1 , Janice Lalikos1 , Matthew Chowaniec2 , Meghan Collins2 , Elias Wilson2 , Russell Babbitt1 , Julie O'Brien1 , Kristen Billiar2 , Raymond M. Dunn1
  • 1Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Massachusetts Medical School, Worcester, Massachusetts
  • 2Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts
Further Information

Publication History

Publication Date:
30 June 2010 (online)

ABSTRACT

The fibula flap is commonly used to reconstruct the tibia. This has risk of postoperative fracture despite long-term non–weight bearing. A flap using noncircumferential distal femur is proposed. This study is to determine the circumference of femur required to produce greater strength than the fibular flap. Femurs and fibulas were harvested from eight cadavers. The structural strength of fibula and femur flaps was assessed using three-point bend. Compression testing was performed on osteotomized and whole femurs to assess donor site morbidity. The 35% flap (mean maximum force at fracture 869 N) was not significantly stronger than the fibula flap (626 N; p > 0.05). The 40% flap (1225 N) was significantly stronger than the fibula flap (p < 0.01). There was no significant difference between forces at fracture for whole femurs (3978 N), femurs with 35% osteotomies (3604 N), and femurs with 40% osteotomies (3493 N; p = 0.87). Change occurred in the fracture pattern of femurs following osteotomies. Whole femurs consistently fractured at the femoral neck, and osteotomized femurs consistently fractured obliquely from the osteotomy. A flap consisting of 40% of the circumference of the distal femur exceeds the structural strength of the fibular flap. Taking such a flap changes the femur's structural integrity; fixation may be prudent following harvest.

REFERENCES

  • 1 Mankin H J, Doppelt S, Tomford W. Clinical experience with allograft implantation. The first ten years.  Clin Orthop Relat Res. 1983;  (174) 69-86
  • 2 Achauer B M, Ericksson E, Guyuron B, Coleman J J, Russell R C, Vander Kolk C A. Plastic Surgery: Indications, Operations, and Outcomes. St. Louis; Mosby 2000
  • 3 Christian E P, Bosse M J, Robb G. Reconstruction of large diaphyseal defects, without free fibular transfer, in grade-IIIB tibial fractures.  J Bone Joint Surg Am. 1989;  71 994-1004
  • 4 Taylor G I, Miller G D, Ham F J. The free vascularized bone graft. A clinical extension of microvascular techniques.  Plast Reconstr Surg. 1975;  55 533-544
  • 5 Buncke H J, Furnas D W, Gordon L, Achauer B M. Free osteocutaneous flap from a rib to the tibia.  Plast Reconstr Surg. 1977;  59 799-804
  • 6 Taylor G I, Townsend P, Corlett R. Superiority of the deep circumflex iliac vessels as the supply for free groin flaps. Clinical work.  Plast Reconstr Surg. 1979;  64 745-759
  • 7 Weiland A J, Moore J R, Daniel R K. Vascularized bone autografts. Experience with 41 cases.  Clin Orthop Relat Res. 1983;  (174) 87-95
  • 8 Yaremchuk M J, Brumback R J, Manson P N, Burgess A R, Poka A, Weiland A J. Acute and definitive management of traumatic osteocutaneous defects of the lower extremity.  Plast Reconstr Surg. 1987;  80 1-14
  • 9 Alonso J E, Regazzoni P. Bridging bone gaps with the Ilizarov technique. Biologic principles.  Clin Plast Surg. 1991;  18 497-504
  • 10 Arai K, Toh S, Tsubo K, Nishikawa S, Narita S, Miura H. Complications of vascularized fibula graft for reconstruction of long bones.  Plast Reconstr Surg. 2002;  109 2301-2306
  • 11 Urbaniak J R, Coogan P G, Gunneson E B, Nunley J A. Treatment of osteonecrosis of the femoral head with free vascularized fibular grafting. A long-term follow-up study of one hundred and three hips.  J Bone Joint Surg Am. 1995;  77 681-694
  • 12 Dunn R M, Babbitt R, Claytor R B. The osseous femur flap: An exploratory study. Presented at the meeting of The World Society for Reconstructive Microsurgery. Heidelberg, Germany; 2003
  • 13 Tang M, Yin Z, Morris S F. A pilot study on three-dimensional visualization of perforator flaps by using angiography in cadavers.  Plast Reconstr Surg. 2008;  122 429-437
  • 14 Kimata Y, Uchiyama K, Ebihara S, Nakatsuka T, Harii K. Anatomic variations and technical problems of the anterolateral thigh flap: a report of 74 cases.  Plast Reconstr Surg. 1998;  102 1517-1523
  • 15 Enneking W F, Eady J L, Burchardt H. Autogenous cortical bone grafts in the reconstruction of segmental skeletal defects.  J Bone Joint Surg Am. 1980;  62 1039-1058
  • 16 Skinner H B. Current Diagnosis and Treatment in Orthopedics. 4th ed. Columbus, OH; McGraw-Hill Companies, Inc. 2006
  • 17 Buchholz R W, Heckman J. D. Rockwood and Green's Fractures in Adults. 6th ed. Hagerstown, MD; Lippincott Williams and Wilkins 2005
  • 18 Boskey A L, Cohen M L, Bullough P G. hard tissue biochemistry: a comparison of fresh-frozen and formalin-fixed tissue samples.  Calcif Tissue Int. 1982;  34 328-331
  • 19 Currey J D, Brear K, Zioupos P, Reilly G C. Effect of formaldehyde fixation on some mechanical properties of bovine bone.  Biomaterials. 1995;  16 1267-1271

Genevieve BroderickM.D. 

Department of Surgery, Division of Plastic and Reconstructive Surgery, University of Massachusetts Medical School

55 Lake Avenue North, Worcester, MA 01655

Email: genevieve.broderick@umassmemorial.org