Am J Perinatol 2011; 28(1): 025-032
DOI: 10.1055/s-0030-1262508
© Thieme Medical Publishers

Transplacental Transfer and Metabolism of Buprenorphine in Preterm Human Placenta

Valentina M. Fokina1 , Svetlana L. Patrikeeva1 , Olga L. Zharikova1 , Tatiana N. Nanovskaya1 , Gary V.D Hankins1 , Mahmoud S. Ahmed1 , 2
  • 1Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Texas
  • 2Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, Texas
Further Information

Publication History

Publication Date:
06 July 2010 (online)

ABSTRACT

We sought to determine whether gestational age affects the transplacental transfer and metabolism of buprenorphine (BUP). Transfer of BUP (10 ng/mL) and its [3H]-isotope was determined across placentas of 30 to 34 weeks of gestation utilizing the technique of dual perfusion of placental lobule. Concentration of the drug in trophoblast tissue and in maternal and fetal circuits was determined by liquid scintillation spectrometry. Microsomes prepared from placentas of 17 to 37 weeks of gestation were divided into three groups: late second, early third, and late third trimesters. Antibodies raised against human cytochrome P450 (CYP) isoforms were utilized to identify the enzyme(s) catalyzing BUP biotransformation by preterm placental microsomes. The amount of norbuprenorphine formed was determined by liquid chromatography-mass spectrometry (LC-MS). BUP transfer across the placentas of 30 to 34 weeks of gestation was similar to those at term. CYP19 antibodies caused 60% inhibition of BUP metabolism by microsomes of late second and early third trimesters and 85% by microsomes of late third trimester. The developmental changes occurring in human placenta between 30 weeks of gestation through term do not affect the transfer of BUP across human placenta. CYP19 is the major enzyme responsible for biotransformation of BUP beginning at 17 weeks of gestation until term.

REFERENCES

  • 1 Johnson R E, Jones H E, Fischer G. Use of buprenorphine in pregnancy: patient management and effects on the neonate.  Drug Alcohol Depend. 2003;  70 (2 Suppl) S87-S101
  • 2 Jones H E, Johnson R E, Jasinski D R et al.. Buprenorphine versus methadone in the treatment of pregnant opioid-dependent patients: effects on the neonatal abstinence syndrome.  Drug Alcohol Depend. 2005;  79 1-10
  • 3 Nanovskaya T N, Deshmukh S, Brooks M, Ahmed M S. Transplacental transfer and metabolism of buprenorphine.  J Pharmacol Exp Ther. 2002;  300 26-33
  • 4 Nekhayeva I A, Nanovskaya T N, Deshmukh S V, Zharikova O L, Hankins G DV, Ahmed M S. Bidirectional transfer of methadone across human placenta.  Biochem Pharmacol. 2005;  69 187-197
  • 5 Pasanen M, Pelkonen O. The expression and environmental regulation of P450 enzymes in human placenta.  Crit Rev Toxicol. 1994;  24 211-229
  • 6 Deshmukh S V, Nanovskaya T N, Ahmed M S. Aromatase is the major enzyme metabolizing buprenorphine in human placenta.  J Pharmacol Exp Ther. 2003;  306 1099-1105
  • 7 Miller R K, Koszalka T R, Brent R L. The transport of molecules across placental membranes. In: Poste G, Nicolson GL, eds. The Cell Surface in Animal Embryogenesis and Development. Amsterdam, New York, Oxford: North-Holland Publishing Company; 1976: 145-223
  • 8 Hakkola J, Pasanen M, Hukkanen J et al.. Expression of xenobiotic-metabolizing cytochrome P450 forms in human full-term placenta.  Biochem Pharmacol. 1996;  51 403-411
  • 9 Hakkola J, Raunio H, Purkunen R et al.. Detection of cytochrome P450 gene expression in human placenta in first trimester of pregnancy.  Biochem Pharmacol. 1996;  52 379-383
  • 10 Kitawaki J, Yoshida N, Osawa Y. An enzyme-linked immunosorbent assay for quantitation of aromatase cytochrome P-450.  Endocrinology. 1989;  124 1417-1423
  • 11 Kitawaki J, Inoue S, Tamura T et al.. Increasing aromatase cytochrome P-450 level in human placenta during pregnancy: studied by immunohistochemistry and enzyme-linked immunosorbent assay.  Endocrinology. 1992;  130 2751-2757
  • 12 Miller R K, Wier P J, Maulik D, di Sant'Agnese P A. Human placenta in vitro: characterization during 12 h of dual perfusion.  Contrib Gynecol Obstet. 1985;  13 77-84
  • 13 Nanovskaya T N, Nekhayeva I A, Hankins G D, Ahmed M S. Transfer of methadone across the dually perfused preterm human placental lobule.  Am J Obstet Gynecol. 2008;  198 126.e1-4
  • 14 Walsh S L, Preston K L, Stitzer M L, Cone E J, Bigelow G E. Clinical pharmacology of buprenorphine: ceiling effects at high doses.  Clin Pharmacol Ther. 1994;  55 569-580
  • 15 Jagsch R, Gombas W, Schindler S D, Eder H, Moody D E, Fischer G. Opioid plasma concentrations in methadone-and buprenorphine-maintained patients.  Addict Biol. 2005;  10 365-371
  • 16 Hieronymus T L, Nanovskaya T N, Deshmukh S V, Vargas R, Hankins G DV, Ahmed M S. Methadone metabolism by early gestational age placentas.  Am J Perinatol. 2006;  23 287-294
  • 17 Konje J C, Kaufmann P, Bell S C, Taylor D J. A longitudinal study of quantitative uterine blood flow with the use of color power angiography in appropriate for gestational age pregnancies.  Am J Obstet Gynecol. 2001;  185 608-613
  • 18 Bassily M, Ghabrial H, Smallwood R A, Morgan D J. Determinants of placental drug transfer: studies in the isolated perfused human placenta.  J Pharm Sci. 1995;  84 1054-1060
  • 19 Nanovskaya T, Nekhayeva I, Karunaratne N, Audus K, Hankins G D, Ahmed M S. Role of P-glycoprotein in transplacental transfer of methadone.  Biochem Pharmacol. 2005;  69 1869-1878
  • 20 Nekhayeva I A, Nanovskaya T N, Hankins G D, Ahmed M S. Role of human placental efflux transporter P-glycoprotein in the transfer of buprenorphine, levo-alpha-acetylmethadol, and paclitaxel.  Am J Perinatol. 2006;  23 423-430
  • 21 Nishimura M, Yaguti H, Yoshitsugu H, Naito S, Satoh T. Tissue distribution of mRNA expression of human cytochrome P450 isoforms assessed by high-sensitivity real-time reverse transcription PCR.  Yakugaku Zasshi. 2003;  123 369-375
  • 22 Bièche I, Narjoz C, Asselah T et al.. Reverse transcriptase-PCR quantification of mRNA levels from cytochrome (CYP)1, CYP2 and CYP3 families in 22 different human tissues.  Pharmacogenet Genomics. 2007;  17 731-742
  • 23 Zharikova O L, Deshmukh S V, Kumar M et al.. The effect of opiates on the activity of human placental aromatase/CYP19.  Biochem Pharmacol. 2007;  73 279-286
  • 24 Iribarne C, Picart D, Dréano Y, Bail J P, Berthou F. Involvement of cytochrome P450 3A4 in N-dealkylation of buprenorphine in human liver microsomes.  Life Sci. 1997;  60 1953-1964
  • 25 Kobayashi K, Yamamoto T, Chiba K et al.. Human buprenorphine N-dealkylation is catalyzed by cytochrome P450 3A4.  Drug Metab Dispos. 1998;  26 818-821
  • 26 Picard N, Cresteil T, Djebli N, Marquet P. In vitro metabolism study of buprenorphine: evidence for new metabolic pathways.  Drug Metab Dispos. 2005;  33 689-695
  • 27 Moody D E, Slawson M H, Strain E C, Laycock J D, Spanbauer A C, Foltz R L. A liquid chromatographic-electrospray ionization-tandem mass spectrometric method for determination of buprenorphine, its metabolite, norbuprenorphine, and a coformulant, naloxone, that is suitable for in vivo and in vitro metabolism studies.  Anal Biochem. 2002;  306 31-39

Mahmoud S AhmedPh.D. 

Professor, Department of Obstetrics & Gynecology, University of Texas Medical Branch

301 University of Texas Medical Branch, Galveston, TX 77555-0587

Email: maahmed@utmb.edu