Semin Thromb Hemost 2011; 37(3): 199-208
DOI: 10.1055/s-0031-1273084
© Thieme Medical Publishers

Diet and Thrombosis Risk: Nutrients for Prevention of Thrombotic Disease

Melinda Phang1 , Sheryl Lazarus2 , Lisa G. Wood1 , Manohar Garg1
  • 1Nutraceuticals Research Group, School of Biomedical Sciences & Pharmacy, University of Newcastle, NSW, Australia
  • 2Lazarus Scientific Research Pty Ltd, Sydney, NSW, Australia
Further Information

Publication History

Publication Date:
31 March 2011 (online)

ABSTRACT

An increased prothrombotic state is a major risk factor for the development of heart attacks, strokes, and venous thromboembolism. Platelet activation and aggregation play an important role in determining a prothrombotic state. Although pharmaceutical agents such as aspirin, heparin, and warfarin are able to reduce prothrombotic tendency, long-term drug treatment may produce a variety of side effects, including bleeding. Diet is generally recognized to be significantly involved in modifying the individual risk for the development of thrombotic diseases, although its influence during the treatment of these disorders is probably less important. Dietary intervention has proven effective in lowering serum lipid levels, which are otherwise essential elements in the pathogenesis of cardiovascular disease. Likewise, certain dietary components have also been proven effective in decreasing platelet activation through various mechanisms and therefore may contribute to attenuating the future risk of thrombosis. This article provides an up-to-date review of the role of nutrient and nonnutrient supplements on platelet aggregation and risk of thrombosis.

REFERENCES

  • 1 Diener H C, Ringelstein E B, von Kummer R PROTECT Trial Group et al. Prophylaxis of thrombotic and embolic events in acute ischemic stroke with the low-molecular-weight heparin certoparin: results of the PROTECT Trial.  Stroke. 2006;  37 (1) 139-144
  • 2 Falanga A, Zacharski L. Deep vein thrombosis in cancer: the scale of the problem and approaches to management.  Ann Oncol. 2005;  16 (5) 696-701
  • 3 Franchini M, Lippi G, Favaloro E J. Coagulopathies and thrombosis: usual and unusual causes and associations, part I.  Semin Thromb Hemost. 2009;  35 (3) 257-259
  • 4 Lippi G, Franchini M, Favaloro E J. Coagulopathies and thrombosis: usual and unusual causes and associations, part II.  Semin Thromb Hemost. 2009;  35 (7) 591-595
  • 5 Lippi G, Franchini M, Favaloro E J. Unsuspected triggers of venous thromboembolism—trivial or not so trivial?.  Semin Thromb Hemost. 2009;  35 (7) 597-604
  • 6 Lippi G, Franchini M. Pathogenesis of venous thromboembolism: when the cup runneth over.  Semin Thromb Hemost. 2008;  34 (8) 747-761
  • 7 Furie B, Furie B C. Mechanisms of thrombus formation.  N Engl J Med. 2008;  359 (9) 938-949
  • 8 Davì G, Patrono C. Platelet activation and atherothrombosis.  N Engl J Med. 2007;  357 (24) 2482-2494
  • 9 Jackson S P. The growing complexity of platelet aggregation.  Blood. 2007;  109 (12) 5087-5095
  • 10 Harenberg J. Development of new anticoagulants: present and future.  Semin Thromb Hemost. 2008;  34 (8) 779-793
  • 11 Sawashita N, Naemura A, Shimizu M, Morimatsu F, Ijiri Y, Yamamoto J. Effect of dietary vegetable and animal proteins on atherothrombosis in mice.  Nutrition. 2006;  22 (6) 661-667
  • 12 Rutherfurd K J, Gill H S. Peptides affecting coagulation.  Br J Nutr. 2000;  84 (Suppl 1) S99-S102
  • 13 Chan K C, Lou P P, Hargrove J L. High casein-lactalbumin diet accelerates blood coagulation in rats.  J Nutr. 1993;  123 (6) 1010-1016
  • 14 Haynes W G. Hyperhomocysteinema, vascular function and atherosclerosis: effects of vitamins.  Cardiovasc Drugs Ther. 2002;  16 (5) 391-399
  • 15 Quéré I, Perneger T V, Zittoun J et al.. Red blood cell methylfolate and plasma homocysteine as risk factors for venous thromboembolism: a matched case-control study.  Lancet. 2002;  359 (9308) 747-752
  • 16 Den Heijer M, Lewington S, Clarke R. Homocysteine, MTHFR and risk of venous thrombosis: a meta-analysis of published epidemiological studies.  J Thromb Haemost. 2005;  3 (2) 292-299
  • 17 Durand P, Lussier-Cacan S, Blache D. Acute methionine load-induced hyperhomocysteinemia enhances platelet aggregation, thromboxane biosynthesis, and macrophage-derived tissue factor activity in rats.  FASEB J. 1997;  11 (13) 1157-1168
  • 18 Bellamy M F, McDowell I F, Ramsey M W et al.. Hyperhomocysteinemia after an oral methionine load acutely impairs endothelial function in healthy adults.  Circulation. 1998;  98 (18) 1848-1852
  • 19 Guttormsen A B, Schneede J, Fiskerstrand T, Ueland P M, Refsum H M. Plasma concentrations of homocysteine and other aminothiol compounds are related to food intake in healthy human subjects.  J Nutr. 1994;  124 (10) 1934-1941
  • 20 Wilson K M, McCaw R B, Leo L et al.. Prothrombotic effects of hyperhomocysteinemia and hypercholesterolemia in ApoE-deficient mice.  Arterioscler Thromb Vasc Biol. 2007;  27 (1) 233-240
  • 21 Preli R B, Klein K P, Herrington D M. Vascular effects of dietary L-arginine supplementation.  Atherosclerosis. 2002;  162 (1) 1-15
  • 22 Daniels B, Linhardt R J, Zhang F, Mao W, Wice S M, Hiebert L M. In vivo antithrombotic synergy of oral heparin and arginine: endothelial thromboresistance without changes in coagulation parameters.  Thromb Haemost. 2006;  95 (5) 865-872
  • 23 Casais P, Alberto M F, Salviú M J, Meschengieser S S, Aixalá M, Lazzari M A. Pilot study of homocysteine and cysteine in patients with thrombosis in different vascular sites. Epidemiology and response to folate.  Thromb Res. 2009;  123 (4) 592-596
  • 24 Morrell C N, Sun H, Ikeda M et al.. Glutamate mediates platelet activation through the AMPA receptor.  J Exp Med. 2008;  205 (3) 575-584
  • 25 Lefevre M, Champagne C M, Tulley R T, Rood J C, Most M M. Individual variability in cardiovascular disease risk factor responses to low-fat and low-saturated-fat diets in men: body mass index, adiposity, and insulin resistance predict changes in LDL cholesterol.  Am J Clin Nutr. 2005;  82 (5) 957-963; quiz 1145–1146
  • 26 Griel A E, Ruder E H, Kris-Etherton P M. The changing roles of dietary carbohydrates: from simple to complex.  Arterioscler Thromb Vasc Biol. 2006;  26 (9) 1958-1965
  • 27 Ceriello A. Coagulation activation in diabetes mellitus: the role of hyperglycaemia and therapeutic prospects.  Diabetologia. 1993;  36 (11) 1119-1125
  • 28 Brownlee M. The pathobiology of diabetic complications: a unifying mechanism.  Diabetes. 2005;  54 (6) 1615-1625
  • 29 Brand-Miller J, Dickinson S, Barclay A, Allman-Farinelli M. Glycemic index, glycemic load, and thrombogenesis.  Semin Thromb Hemost. 2009;  35 (1) 111-118
  • 30 Kirmizis D, Chatzidimitriou D. Antiatherogenic effects of vitamin E: the search for the Holy Grail.  Vasc Health Risk Manag. 2009;  5 767-774
  • 31 Gaziano J M. Vitamin E and cardiovascular disease: observational studies.  Ann N Y Acad Sci. 2004;  1031 280-291
  • 32 Salvemini D, Radziszewski W, Korbut R, Vane J. The use of oxyhaemoglobin to explore the events underlying inhibition of platelet aggregation induced by NO or NO-donors.  Br J Pharmacol. 1990;  101 (4) 991-995
  • 33 Okuma M, Steiner M, Baldini G. Studies on lipid peroxides in platelets. II. Effect of aggregating agents and platelet antibody.  J Lab Clin Med. 1971;  77 (5) 728-742
  • 34 Steiner M, Anastasi J, Vitamin E. Vitamin E. An inhibitor of the platelet release reaction.  J Clin Invest. 1976;  57 (3) 732-737
  • 35 Li D, Saldeen T, Romeo F, Mehta J L. Different isoforms of tocopherols enhance nitric oxide synthase phosphorylation and inhibit human platelet aggregation and lipid peroxidation: implications in therapy with vitamin E.  J Cardiovasc Pharmacol Ther. 2001;  6 (2) 155-161
  • 36 Jandak J, Steiner M, Richardson P D. Alpha-tocopherol, an effective inhibitor of platelet adhesion.  Blood. 1989;  73 (1) 141-149
  • 37 Haimovich B, Kaneshiki N, Ji P. Protein kinase C regulates tyrosine phosphorylation of pp125FAK in platelets adherent to fibrinogen.  Blood. 1996;  87 (1) 152-161
  • 38 Freedman J E, Farhat J H, Loscalzo J, Keaney Jr J F. Alpha-tocopherol inhibits aggregation of human platelets by a protein kinase C-dependent mechanism.  Circulation. 1996;  94 (10) 2434-2440
  • 39 Gunther K E, Conway G, Leibach L, Crowther M A. Low-dose oral vitamin K is safe and effective for outpatient management of patients with an INR> 10.  Thromb Res. 2004;  113 (3-4) 205-209
  • 40 Eichbaum F W, Slemer O, Zyngier S B. Anti-inflammatory effect of warfarin and vitamin K1.  Naunyn Schmiedebergs Arch Pharmacol. 1979;  307 (2) 185-190
  • 41 Rossi F, Zoppi G. Effect of menadione on the phagocytic activity of guinea-pig polymorphonuclear leucocytes.  Experientia. 1966;  22 (7) 433-434
  • 42 Blackwell G J, Radomski M, Moncada S. Inhibition of human platelet aggregation by vitamin K.  Thromb Res. 1985;  37 (1) 103-114
  • 43 Merli G J, Fink J. Vitamin K and thrombosis.  Vitam Horm. 2008;  78 265-279
  • 44 Den Heijer M, Lewington S, Clarke R. Homocysteine, MTHFR and risk of venous thrombosis: a meta-analysis of published epidemiological studies.  J Thromb Haemost. 2005;  3 (2) 292-299
  • 45 den Heijer M, Willems H P, Blom H J et al.. Homocysteine lowering by B vitamins and the secondary prevention of deep vein thrombosis and pulmonary embolism: a randomized, placebo-controlled, double-blind trial.  Blood. 2007;  109 (1) 139-144
  • 46 Beer T M, Venner P M, Ryan C W et al.. High dose calcitriol may reduce thrombosis in cancer patients.  Br J Haematol. 2006;  135 (3) 392-394
  • 47 Wu-Wong J R. Are vitamin D receptor activators useful for the treatment of thrombosis?.  Curr Opin Investig Drugs. 2009;  10 (9) 919-927
  • 48 Kendler B S. Garlic (Allium sativum) and onion (Allium cepa): a review of their relationship to cardiovascular disease.  Prev Med. 1987;  16 (5) 670-685
  • 49 Bordia T, Mohammed N, Thomson M, Ali M. An evaluation of garlic and onion as antithrombotic agents.  Prostaglandins Leukot Essent Fatty Acids. 1996;  54 (3) 183-186
  • 50 Ali M, Thomson M, Afzal M. Garlic and onions: their effect on eicosanoid metabolism and its clinical relevance.  Prostaglandins Leukot Essent Fatty Acids. 2000;  62 (2) 55-73
  • 51 Ali M. Mechanism by which garlic (Allium sativum) inhibits cyclooxygenase activity. Effect of raw versus boiled garlic extract on the synthesis of prostanoids.  Prostaglandins Leukot Essent Fatty Acids. 1995;  53 (6) 397-400
  • 52 Chen J H, Chen H I, Tsai S J, Jen C J. Chronic consumption of raw but not boiled Welsh onion juice inhibits rat platelet function.  J Nutr. 2000;  130 (1) 34-37
  • 53 Goldman I L, Kopelberg M, Debaene J E, Schwartz B S. Antiplatelet activity in onion (Allium cepa) is sulfur dependent.  Thromb Haemost. 1996;  76 (3) 450-452
  • 54 Bayer T, Wagner H, Wray V, Dorsch W. Inhibitors of cyclo-oxygenase and lipoxygenase in onions.  Lancet. 1988;  2 (8616) 906
  • 55 Srivastava K C. Aqueous extracts of onion, garlic and ginger inhibit platelet aggregation and alter arachidonic acid metabolism.  Biomed Biochim Acta. 1984;  43 (8–9) S335-S346
  • 56 Makheja A N, Bailey J M. Antiplatelet constituents of garlic and onion.  Agents Actions. 1990;  29 (3–4) 360-363
  • 57 Apitz-Castro R, Badimon J J, Badimon L. Effect of ajoene, the major antiplatelet compound from garlic, on platelet thrombus formation.  Thromb Res. 1992;  68 (2) 145-155
  • 58 Apitz-Castro R, Ledezma E, Escalante J, Jain M K. The molecular basis of the antiplatelet action of ajoene: direct interaction with the fibrinogen receptor.  Biochem Biophys Res Commun. 1986;  141 (1) 145-150
  • 59 Rendu F, Daveloose D, Debouzy J C et al.. Ajoene, the antiplatelet compound derived from garlic, specifically inhibits platelet release reaction by affecting the plasma membrane internal microviscosity.  Biochem Pharmacol. 1989;  38 (8) 1321-1328
  • 60 Apitz-Castro R, Cabrera S, Cruz M R, Ledezma E, Jain M K. Effects of garlic extract and of three pure components isolated from it on human platelet aggregation, arachidonate metabolism, release reaction and platelet ultrastructure.  Thromb Res. 1983;  32 (2) 155-169
  • 61 Fuhrman B, Rosenblat M, Hayek T, Coleman R, Aviram M. Ginger extract consumption reduces plasma cholesterol, inhibits LDL oxidation and attenuates development of atherosclerosis in atherosclerotic, apolipoprotein E-deficient mice.  J Nutr. 2000;  130 (5) 1124-1131
  • 62 Bhandari U, Sharma J N, Zafar R. The protective action of ethanolic ginger (Zingiber officinale) extract in cholesterol fed rabbits.  J Ethnopharmacol. 1998;  61 (2) 167-171
  • 63 Afzal M, Al-Hadidi D, Menon M, Pesek J, Dhami M S. Ginger: an ethnomedical, chemical and pharmacological review.  Drug Metabol Drug Interact. 2001;  18 (3–4) 159-190
  • 64 Koo K L, Ammit A J, Tran V H, Duke C C, Roufogalis B D. Gingerols and related analogues inhibit arachidonic acid-induced human platelet serotonin release and aggregation.  Thromb Res. 2001;  103 (5) 387-397
  • 65 Thomson M, Al-Qattan K K, Al-Sawan S M, Alnaqeeb M A, Khan I, Ali M. The use of ginger (Zingiber officinale Rosc.) as a potential anti-inflammatory and antithrombotic agent.  Prostaglandins Leukot Essent Fatty Acids. 2002;  67 (6) 475-478
  • 66 Srivastava K C. Effect of onion and ginger consumption on platelet thromboxane production in humans.  Prostaglandins Leukot Essent Fatty Acids. 1989;  35 (3) 183-185
  • 67 Janssen P L, Meyboom S, van Staveren W A, de Vegt F, Katan M B. Consumption of ginger (Zingiber officinale roscoe) does not affect ex vivo platelet thromboxane production in humans.  Eur J Clin Nutr. 1996;  50 (11) 772-774
  • 68 Mahady G B. Ginkgo biloba for the prevention and treatment of cardiovascular disease: a review of the literature.  J Cardiovasc Nurs. 2002;  16 (4) 21-32
  • 69 Beckert B W, Concannon M J, Henry S L, Smith D S, Puckett C L. The effect of herbal medicines on platelet function: an in vivo experiment and review of the literature.  Plast Reconstr Surg. 2007;  120 (7) 2044-2050
  • 70 Koch E. Inhibition of platelet activating factor (PAF)-induced aggregation of human thrombocytes by ginkgolides: considerations on possible bleeding complications after oral intake of Ginkgo biloba extracts.  Phytomedicine. 2005;  12 (1–2) 10-16
  • 71 Bal Dit Sollier C, Caplain H, Drouet L. No alteration in platelet function or coagulation induced by EGb761 in a controlled study.  Clin Lab Haematol. 2003;  25 (4) 251-253
  • 72 Lippi G, Targher G, Guidi G C. Ginkgo biloba, inflammation and lipoprotein (a).  Atherosclerosis. 2007;  195 (2) 417-418; author reply 419–422
  • 73 Parfitt V J, Rubba P, Bolton C, Marotta G, Hartog M, Mancini M. A comparison of antioxidant status and free radical peroxidation of plasma lipoproteins in healthy young persons from Naples and Bristol.  Eur Heart J. 1994;  15 (7) 871-876
  • 74 Kohlmeier L, Kark J D, Gomez-Gracia E et al.. Lycopene and myocardial infarction risk in the EURAMIC Study.  Am J Epidemiol. 1997;  146 (8) 618-626
  • 75 Willcox J K, Catignani G L, Lazarus S. Tomatoes and cardiovascular health.  Crit Rev Food Sci Nutr. 2003;  43 (1) 1-18
  • 76 Dutta-Roy A K, Crosbie L, Gordon M J. Effects of tomato extract on human platelet aggregation in vitro.  Platelets. 2001;  12 (4) 218-227
  • 77 Lazarus S A, Garg M L. Tomato extract inhibits human platelet aggregation in vitro without increasing basal cAMP levels.  Int J Food Sci Nutr. 2004;  55 (3) 249-256
  • 78 Lazarus S A, Bowen K, Garg M L. Tomato juice and platelet aggregation in type 2 diabetes.  JAMA. 2004;  292 (7) 805-806
  • 79 Yamamoto J, Taka T, Yamada K et al.. Tomatoes have natural anti-thrombotic effects.  Br J Nutr. 2003;  90 (6) 1031-1038
  • 80 Arts I C, Hollman P C, Feskens E J, Bueno de Mesquita H B, Kromhout D. Catechin intake might explain the inverse relation between tea consumption and ischemic heart disease: the Zutphen Elderly Study.  Am J Clin Nutr. 2001;  74 (2) 227-232
  • 81 Mangiapane H, Thomson J, Salter A, Brown S, Bell G D, White D A. The inhibition of the oxidation of low density lipoprotein by ( + )-catechin, a naturally occurring flavonoid.  Biochem Pharmacol. 1992;  43 (3) 445-450
  • 82 Fitzpatrick D F, Bing B, Maggi D A, Fleming R C, O'Malley R M. Vasodilating procyanidins derived from grape seeds.  Ann N Y Acad Sci. 2002;  957 78-89
  • 83 Russo P, Tedesco I, Russo M, Russo G L, Venezia A, Cicala C. Effects of de-alcoholated red wine and its phenolic fractions on platelet aggregation.  Nutr Metab Cardiovasc Dis. 2001;  11 (1) 25-29
  • 84 Kang W S, Lim I H, Yuk D Y et al.. Antithrombotic activities of green tea catechins and (-)-epigallocatechin gallate.  Thromb Res. 1999;  96 (3) 229-237
  • 85 Pearson D A, Paglieroni T G, Rein D et al.. The effects of flavanol-rich cocoa and aspirin on ex vivo platelet function.  Thromb Res. 2002;  106 (4–5) 191-197
  • 86 Dopheide S M, Yap C L, Jackson S P. Dynamic aspects of platelet adhesion under flow.  Clin Exp Pharmacol Physiol. 2001;  28 (5–6) 355-363
  • 87 Schramm D D, Wang J F, Holt R R et al.. Chocolate procyanidins decrease the leukotriene-prostacyclin ratio in humans and human aortic endothelial cells.  Am J Clin Nutr. 2001;  73 (1) 36-40
  • 88 Maffei Facinó R, Carini M, Aldini G et al.. Procyanidines from Vitis vinifera seeds protect rabbit heart from ischemia/reperfusion injury: antioxidant intervention and/or iron and copper sequestering ability.  Planta Med. 1996;  62 (6) 495-502
  • 89 Yang T T, Koo M W. Inhibitory effect of Chinese green tea on endothelial cell-induced LDL oxidation.  Atherosclerosis. 2000;  148 (1) 67-73
  • 90 Gryglewski R J, Korbut R, Robak J, Swies J. On the mechanism of antithrombotic action of flavonoids.  Biochem Pharmacol. 1987;  36 (3) 317-322
  • 91 Chang W C, Hsu F L. Inhibition of platelet aggregation and arachidonate metabolism in platelets by procyanidins.  Prostaglandins Leukot Essent Fatty Acids. 1989;  38 (3) 181-188
  • 92 Kang W S, Chung K H, Chung J H et al.. Antiplatelet activity of green tea catechins is mediated by inhibition of cytoplasmic calcium increase.  J Cardiovasc Pharmacol. 2001;  38 (6) 875-884
  • 93 Lou F Q, Zhang M F, Zhang X G, Liu J M, Yuan W L. A study on tea-pigment in prevention of atherosclerosis.  Chin Med J (Engl). 1989;  102 (8) 579-583
  • 94 Lippi G, Franchini M, Favaloro E J, Targher G. Moderate red wine consumption and cardiovascular disease risk: beyond the “French paradox”.  Semin Thromb Hemost. 2010;  36 (1) 59-70
  • 95 Zbikowska H M, Olas B, Wachowicz B, Krajewski T. Response of blood platelets to resveratrol.  Platelets. 1999;  10 (4) 247-252
  • 96 Olas B, Wachowicz B, Szewczuk J, Saluk-Juszczak J, Kaca W. The effect of resveratrol on the platelet secretory process induced by endotoxin and thrombin.  Microbios. 2001;  105 (410) 7-13
  • 97 Pace-Asciak C R, Hahn S, Diamandis E P, Soleas G, Goldberg D M. The red wine phenolics trans-resveratrol and quercetin block human platelet aggregation and eicosanoid synthesis: implications for protection against coronary heart disease.  Clin Chim Acta. 1995;  235 (2) 207-219
  • 98 Wang Z, Zou J, Huang Y, Cao K, Xu Y, Wu J M. Effect of resveratrol on platelet aggregation in vivo and in vitro.  Chin Med J (Engl). 2002;  115 (3) 378-380
  • 99 Wang Z, Huang Y, Zou J, Cao K, Xu Y, Wu J M. Effects of red wine and wine polyphenol resveratrol on platelet aggregation in vivo and in vitro.  Int J Mol Med. 2002;  9 (1) 77-79
  • 100 Demrow H S, Slane P R, Folts J D. Administration of wine and grape juice inhibits in vivo platelet activity and thrombosis in stenosed canine coronary arteries.  Circulation. 1995;  91 (4) 1182-1188
  • 101 Keevil J G, Osman H E, Reed J D, Folts J D. Grape juice, but not orange juice or grapefruit juice, inhibits human platelet aggregation.  J Nutr. 2000;  130 (1) 53-56
  • 102 Freedman J E, Parker III C, Li L et al.. Select flavonoids and whole juice from purple grapes inhibit platelet function and enhance nitric oxide release.  Circulation. 2001;  103 (23) 2792-2798
  • 103 Stein J H, Keevil J G, Wiebe D A, Aeschlimann S, Folts J D. Purple grape juice improves endothelial function and reduces the susceptibility of LDL cholesterol to oxidation in patients with coronary artery disease.  Circulation. 1999;  100 (10) 1050-1055
  • 104 Klatsky A L. Epidemiology of coronary heart disease—influence of alcohol.  Alcohol Clin Exp Res. 1994;  18 (1) 88-96
  • 105 Langer R D, Criqui M H, Reed D M. Lipoproteins and blood pressure as biological pathways for effect of moderate alcohol consumption on coronary heart disease.  Circulation. 1992;  85 (3) 910-915
  • 106 Mukamal K J, Massaro J M, Ault K A et al.. Alcohol consumption and platelet activation and aggregation among women and men: the Framingham Offspring Study.  Alcohol Clin Exp Res. 2005;  29 (10) 1906-1912
  • 107 Heemskerk J W, Vossen R C, van Dam-Mieras M C. Polyunsaturated fatty acids and function of platelets and endothelial cells.  Curr Opin Lipidol. 1996;  7 (1) 24-29
  • 108 Renaud S C, Ruf J C. Effects of alcohol on platelet functions.  Clin Chim Acta. 1996;  246 (1-2) 77-89
  • 109 Rand M L, Packham M A, Kinlough-Rathbone R L, Fraser Mustard J. Effects of ethanol on pathways of platelet aggregation in vitro.  Thromb Haemost. 1988;  59 (3) 383-387
  • 110 Rubin R. Ethanol interferes with collagen-induced platelet activation by inhibition of arachidonic acid mobilization.  Arch Biochem Biophys. 1989;  270 (1) 99-113
  • 111 Dutta-Roy A K. Dietary components and human platelet activity.  Platelets. 2002;  13 (2) 67-75
  • 112 Takachi R, Kimira M, Uesugi S, Kudo Y, Ouchi K, Watanabe S. The effect of dietary and plasma fatty acids on platelet aggregation in senior generation of Japanese women.  Biofactors. 2004;  22 (1–4) 205-210
  • 113 Smith R D, Kelly C N, Fielding B A et al.. Long-term monounsaturated fatty acid diets reduce platelet aggregation in healthy young subjects.  Br J Nutr. 2003;  90 (3) 597-606
  • 114 López-Miranda J, Badimon L, Bonanome A et al.. Monounsaturated fat and cardiovascular risk.  Nutr Rev. 2006;  64 (Suppl) S2-S12
  • 115 Bang H O, Dyerberg J, Sinclair H M. The composition of the Eskimo food in north western Greenland.  Am J Clin Nutr. 1980;  33 (12) 2657-2661
  • 116 Grundt H, Nilsen D W. n-3 fatty acids and cardiovascular disease.  Haematologica. 2008;  93 (6) 807-812
  • 117 Abeywardena M Y, Head R J. Longchain n-3 polyunsaturated fatty acids and blood vessel function.  Cardiovasc Res. 2001;  52 (3) 361-371
  • 118 Phang M, Garg M L, Sinclair A J. Inhibition of platelet aggregation by omega-3 polyunsaturated fatty acids is gender specific—redefining platelet response to fish oils.  Prostaglandins Leukot Essent Fatty Acids. 2009;  81 (1) 35-40
  • 119 Ferretti A, Judd J T, Taylor P R, Nair P P, Flanagan V P. Ingestion of marine oil reduces excretion of 11-dehydrothromboxane B2, an index of intravascular production of thromboxane A2.  Prostaglandins Leukot Essent Fatty Acids. 1993;  48 (4) 305-308

Professor Manohar Garg

Director, Nutraceuticals Research Group, 305C Medical Science Building, University of Newcastle

Callaghan, NSW 2308, Australia

Email: Manohar.garg@newcastle.edu.au