Subscribe to RSS
DOI: 10.1055/s-0031-1273254
© Georg Thieme Verlag KG Stuttgart · New York
Physiologie des humanen Hornhautendothels – neue Erkenntnisse durch elektrophysiologische Untersuchungen
Physiology of the Human Corneal Endothelium – New Insights from Electrophysiological InvestigationsPublication History
Eingegangen: 12.2.2011
Angenommen: 18.2.2011
Publication Date:
03 May 2011 (online)

Zusammenfassung
Die Identifizierung von apoptotischen oder geschädigten humanen Hornhautendothel(HCE)-Zellen ist derzeit auf eine morphologische Beurteilung und Vitalfärbung begrenzt. Spezielle elektrophysiologische Untersuchungen könnten künftig helfen, geschädigte HCE Zellen bereits in einem früheren Stadium zu erkennen. Neben Calcium Imaging ist die sogenannte Patch-Clamp-Technik eine wichtige Testmethode, mit der man die Wirkung verschiedenster Substanzen auf Ionenkanäle und Rezeptoren der Zellmembran überprüfen kann. Erste elektrophysiologische Pilotexperimente mit kultivierten und frisch isolierten HCE-Zellen haben vielversprechende Ergebnisse hervorgebracht. So wurde erstmals die Expression bestimmter Transient-Rezeptor-Potenzial- Kanäle (TRPs) in HCE-Zellen nachgewiesen. Die Funktion dieser TRP-Kanäle ist allerdings noch nicht völlig geklärt. Beim Menschen spielen TRP-Kanäle eine wichtige Rolle bei der Wahrnehmung von Geschmack, Pheromonen, Temperatur und Schmerz und sind an Osmolarität beteiligt. Die Übersichtsarbeit fasst den Stand der Literatur zur Elektrophysiologie des humanen Hornhautendothels zusammen und leitet daraus mögliche Ansätze zu einem empfindlichen Vitalitäts- und Funktionstest unter Ausnutzung der elektrophysiologischen Eigenschaften von HCE Zellen ab.
Abstract
Currently, the identification of apoptotic or damaged human corneal endothelial (HCE) cells is limited to a morphological assessment and vital staining. Specific electrophysiological investigations may prospectively help to identify damaged HCE cells at an earlier stage. Besides calcium imaging, the so-called patch-clamp technique is an important test method enabling one to assay the effect of various substances on ion channels and receptors of the cell membrane. First electrophysiological pilot experiments with cultivated and freshly isolated HCE cells have revealed promising results. In this way, the expression of certain transient receptor potential channels (TRPs) could be demonstrated. However, the function of these channels is still not fully elucidated. In humans, TRPs play a crucial role in the sense of taste, pheromones, temperature and pain and are involved in osmolarity. This review summarises the current literature on the electrophysiology of the human corneal endothelium and deduces potential approaches to a sensitive vitality and function test under utilisation of the electrophysiological properties of HCE cells.
Schlüsselwörter
Hornhautendothel - In-vitro-Elektrophysiologie - Zellvitalität - Ionenkanäle
Key words
human corneal endothelium - in vitro electrophysiology - cell vitality - ion channels
Literatur
- 1
Waring III G O, Bourne W M, Edelhauser H F et al.
The corneal endothelium. Normal and pathologic structure and function.
Ophthalmology.
1982;
89
531-590
MissingFormLabel
- 2
Joyce N C.
Proliferative capacity of the corneal endothelium.
Prog Retin Eye Res.
2003;
22
359-389
MissingFormLabel
- 3
Bell K D, Campbell R J, Bourne W M.
Pathology of late endothelial failure: late endothelial failure of penetrating keratoplasty:
study with light and electron microscopy.
Cornea.
2000;
19
40-46
MissingFormLabel
- 4
Ing J J, Ing H H, Nelson L R et al.
Ten-year postoperative results of penetrating keratoplasty.
Ophthalmology.
1998;
105
1855-1865
MissingFormLabel
- 5
Bourne W M.
Corneal endothelium – past, present, and future.
Eye Contact Lens.
2010;
36
310-314
MissingFormLabel
- 6
Armitage W J, Dick A D, Bourne W M.
Predicting endothelial cell loss and long-term corneal graft survival.
Invest Ophthalmol Vis Sci.
2003;
44
3326-3331
MissingFormLabel
- 7
Barcia R N, Dana M R, Kazlauskas A.
Corneal graft rejection is accompanied by apoptosis of the endothelium and is prevented
by gene therapy with bcl-xL.
Am J Transplant.
2007;
7
2082-2089
MissingFormLabel
- 8
Fuchsluger T A, Jurkunas U, Kazlauskas A et al.
Corneal Endothelial Cells Are Protected from Apoptosis by Gene Therapy.
Hum Gene Ther.
2010;
(Epub ahead of print)
MissingFormLabel
- 9
Lindstrom R L.
Advances in corneal preservation.
Trans Am Ophthalmol Soc.
1990;
88
555-648
MissingFormLabel
- 10
Borenfreund E, Puerner J A.
Toxicity determined in vitro by morphological alterations and neutral red absorption.
Toxicol Lett.
1985;
24
119-124
MissingFormLabel
- 11
Bednarz J, Doubilei V, Wollnik P C et al.
Effect of three different media on serum free culture of donor corneas and isolated
human corneal endothelial cells.
Br J Ophthalmol.
2001;
85
1416-1420
MissingFormLabel
- 12
Engelmann K, Drexler D, Böhnke M.
Transplantation of adult human or porcine corneal endothelial cells onto human recipients
in vitro. Part I: Cell culturing and transplantation procedure.
Cornea.
1999;
18
199-206
MissingFormLabel
- 13
Melles G R, Lander F, Rietveld F J.
Transplantation of Descemet’s membrane carrying viable endothelium through a small
scleral incision.
Cornea.
2002;
21
415-418
MissingFormLabel
- 14
Moller-Pedersen T, Hartmann U, Moller H J et al.
Evaluation of potential organ culture media for eye banking using human donor corneas.
Br J Ophthalmol.
2001;
85
1075-1079
MissingFormLabel
- 15
Ramsey I S, Delling M, Clapham D E.
An introduction to TRP channels.
Annu Rev Physiol.
2006;
68
619-647
MissingFormLabel
- 16
Rae J L, Watsky M A.
Ionic channels in corneal endothelium.
Am J Physiol.
1996;
270
C975-C989
MissingFormLabel
- 17
Watsky M A, Cooper K, Rae J L.
Sodium channels in ocular epithelia.
Pflugers Archive.
1991;
419
454-459
MissingFormLabel
- 18
Watsky M A, Cooper K, Rae J L.
Transient outwardly rectifying potassium channel in the rabbit corneal endothelium.
J Membr Biol.
1992;
128
123-132
MissingFormLabel
- 19
Rae J L, Shepard A R.
Kir2.1 Potassium channels and corneal epithelia.
Curr Eye Res.
2000;
20
144-152
MissingFormLabel
- 20
Rae J L, Dewey J, Cooper K.
Properties of single potassium-selective ionic channels from the apical membrane of
rabbit corneal endothelium.
Exp Eye Res.
1989;
49
591-609
MissingFormLabel
- 21
Mergler S, Dannowski H, Bednarz J et al.
Calcium influx induced by activation of receptor tyrosine kinases in SV 40-transfected
human corneal endothelial cells.
Exp Eye Res.
2003;
77
485-495
MissingFormLabel
- 22
Mergler S, Pleyer U, Reinach P et al.
EGF suppresses hydrogen peroxide induced Ca2 + influx by inhibiting L-type channel
activity in cultured human corneal endothelial cells.
Exp Eye Res.
2005;
80
285-293
MissingFormLabel
- 23
Mergler S, Pleyer U.
The human corneal endothelium: New insights into electrophysiology and ion channels.
Prog Retin Eye Res.
2007;
26
359-378
MissingFormLabel
- 24
Mergler S, Valtink M, Coulson-Thomas V J et al.
TRPV channels mediate temperature-sensing in human corneal endothelial cells.
Exp Eye Res.
2010;
90
758-770
MissingFormLabel
- 25
Rae J L, Dewey J, Cooper K et al.
A non-selective cation channel in rabbit corneal endothelium activated by internal
calcium and inhibited by internal ATP.
Exp Eye Res.
1990;
50
373-384
MissingFormLabel
- 26
Zhang F, Yang H, Wang Z et al.
Transient receptor potential vanilloid 1 activation induces inflammatory cytokine
release in corneal epithelium through MAPK signaling.
J Cell Physiol.
2007;
213
730-739
MissingFormLabel
- 27
Mergler S, Garreis F, Sahlmüller M et al.
Thermosensitive transient receptor potential channels (thermo-TRPs) in human corneal
epithelial cells.
J Cell Physiol.
2010;
; (Epub ahead of print)
MissingFormLabel
- 28
Chuang H H, Neuhausser W M, Julius D.
The super-cooling agent icilin reveals a mechanism of coincidence detection by a temperature-sensitive
TRP channel.
Neuron.
2004;
43
859-869
MissingFormLabel
- 29
Voets T, Droogmans G, Wissenbach U et al.
The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels.
Nature.
2004;
430
748-754
MissingFormLabel
- 30
Parra A, Madrid R, Echevarria D et al.
Ocular surface wetness is regulated by TRPM8-dependent cold thermoreceptors of the
cornea.
Nat Med.
2010;
16
1396-1399
MissingFormLabel
- 31
Chow J, Norng M, Zhang J et al.
TRPV6 mediates capsaicin-induced apoptosis in gastric cancer cells – Mechanisms behind
a possible new ”hot” cancer treatment.
Biochim Biophys Acta.
2007;
1773
565-576
MissingFormLabel
- 32
Sappington R M, Sidorova T, Long D J et al.
TRPV1: Contribution to Retinal Ganglion Cell Apoptosis and Increased Intracellular
Ca2 + with Exposure to Hydrostatic Pressure.
Invest Ophthalmol Vis Sci.
2009;
50
717-728
MissingFormLabel
- 33
Yao X, Garland C J.
Recent developments in vascular endothelial cell transient receptor potential channels.
Circ Res.
2005;
97
853-863
MissingFormLabel
- 34
Zhang W, Chu X, Tong Q et al.
A novel TRPM2 isoform inhibits calcium influx and susceptibility to cell death.
J Biol Chem.
2003;
278
16222-16229
MissingFormLabel
- 35
Rusznak Z, Harasztosi C, Stanfield P R et al.
An improved cell isolation technique for studying intracellular Ca(2 + ) homeostasis
in neurones of the cochlear nucleus.
Brain Res Brain Res Protoc.
2001;
7
68-75
MissingFormLabel
- 36
Li Q J, Ashraf M F, Shen D F et al.
The role of apoptosis in the pathogenesis of Fuchs endothelial dystrophy of the cornea.
Arch Ophthalmol.
2001;
119
1597-1604
MissingFormLabel
- 37
Lu L.
Stress-induced corneal epithelial apoptosis mediated by K(+ ) channel activation.
Prog Retin Eye Res.
2006;
25
515-538
MissingFormLabel
- 38
Banan A, Fields J Z, Zhang Y et al.
Key role of PKC and Ca2 + in EGF protection of microtubules and intestinal barrier
against oxidants.
Am J Physiol Gastrointest Liver Physiol.
2001;
280
G828-G843
MissingFormLabel
- 39
Barisani-Asenbauer T, Kaminski S, Schuster E et al.
Impact of growth factors on morphometric corneal endothelial cell parameters and cell
density in culture-preserved human corneas.
Cornea.
1997;
16
537-540
MissingFormLabel
- 40
Rieck P, Oliver L, Engelmann K et al.
The role of exogenous/endogenous basic fibroblast growth factor (FGF2) and transforming
growth factor beta (TGF beta-1) on human corneal endothelial cells proliferation in
vitro.
Exp Cell Res.
1995;
220
36-46
MissingFormLabel
- 41
Rieck P W, Gigon M, Jaroszewski J et al.
Increased endothelial survival of organ-cultured corneas stored in FGF-2-supplemented
serum-free medium.
Invest Ophthalmol Vis Sci.
2003;
44
3826-3832
MissingFormLabel
- 42
Mergler S, Steinhausen K, Wiederholt M et al.
Altered regulation of L-type channels by protein kinase C and protein tyrosine kinases
as a pathophysiologic effect in retinal degeneration.
FASEB J.
1998;
12
1125-1134
MissingFormLabel
- 43
Akanda N, Elinder F.
Biophysical properties of the apoptosis-inducing plasma membrane VDAC.
Biophys J.
2006;
90
4405-4417
MissingFormLabel
- 44
Nagy P, Panyi G, Jenei A et al.
Ion-channel activities regulate transmembrane signaling in thymocyte apoptosis and
T-cell activation.
Immunol Lett.
1995;
44
91-95
MissingFormLabel
- 45
Parekh A B, Penner R.
Store depletion and calcium influx.
Physiol Rev.
1997;
77
901-930
MissingFormLabel
- 46
Skryma R, Mariot P, Bourhis X L et al.
Store depletion and store-operated Ca2 + current in human prostate cancer LNCaP cells:
involvement in apoptosis.
J Physiol.
2000;
527 Pt 1
71-83
MissingFormLabel
- 47
Kruse F E, Tseng S C.
Proliferative and differentiative response of corneal and limbal epithelium to extracellular
calcium in serum-free clonal cultures.
J Cell Physiol.
1992;
151
347-360
MissingFormLabel
- 48
Chvatchko Y, Valera S, Aubry J P et al.
The involvement of an ATP-gated ion channel, P(2X1), in thymocyte apoptosis.
Immunity.
1996;
5
275-283
MissingFormLabel
Stefan Mergler
Klinik für Augenheilkunde, Charité Universitätsmedizin Berlin
Augustenburger Platz 1
13353 Berlin
Phone: ++ 49/30/55 96 48
Fax: ++ 49/30/55 99 48
Email: stefan.mergler@charite.de