Semin Reprod Med 2011; 29(3): 225-236
DOI: 10.1055/s-0031-1275516
© Thieme Medical Publishers

The Intrauterine Growth Restriction Phenotype: Fetal Adaptations and Potential Implications for Later Life Insulin Resistance and Diabetes

Stephanie R. Thorn1 , Paul J. Rozance1 , Laura D. Brown1 , William W. Hay1
  • 1University of Colorado School of Medicine, Aurora, Colorado
Further Information

Publication History

Publication Date:
27 June 2011 (online)

ABSTRACT

The intrauterine growth restricted (IUGR) fetus develops unique metabolic adaptations in response to exposure to reduced nutrient supply. These adaptations provide survival value for the fetus by enhancing the capacity of the fetus to take up and use nutrients, thereby reducing the need for nutrient supply. Each organ and tissue in the fetus adapts differently, with the brain showing the greatest capacity for maintaining nutrient supply and growth. Such adaptations, if persistent, also have the potential in later life to promote nutrient uptake and storage, which directly lead to complications of obesity, insulin resistance, reduced insulin production, and type 2 diabetes.

REFERENCES

  • 1 Hales C N, Barker D J. The thrifty phenotype hypothesis.  Br Med Bull. 2001;  60 5-20
  • 2 Simmons R A. Developmental origins of beta-cell failure in type 2 diabetes: the role of epigenetic mechanisms.  Pediatr Res. 2007;  61 (5 Pt 2) 64R-67R
  • 3 McMillen I C, Robinson J S. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming.  Physiol Rev. 2005;  85 (2) 571-633
  • 4 Gluckman P D, Hanson M A, Buklijas T, Low F M, Beedle A S. Epigenetic mechanisms that underpin metabolic and cardiovascular diseases.  Nat Rev Endocrinol. 2009;  5 (7) 401-408
  • 5 Hay Jr W W. Recent observations on the regulation of fetal metabolism by glucose.  J Physiol. 2006;  572 (Pt 1) 17-24
  • 6 Battaglia F C, Meschia G. Principal substrates of fetal metabolism.  Physiol Rev. 1978;  58 (2) 499-527
  • 7 Rozance P J, Limesand S W, Hay Jr W W. Decreased nutrient-stimulated insulin secretion in chronically hypoglycemic late-gestation fetal sheep is due to an intrinsic islet defect.  Am J Physiol Endocrinol Metab. 2006;  291 (2) E404-E411
  • 8 Ross J C, Fennessey P V, Wilkening R B, Battaglia F C, Meschia G. Placental transport and fetal utilization of leucine in a model of fetal growth retardation.  Am J Physiol. 1996;  270 (3 Pt 1) E491-E503
  • 9 Thorn S R, Regnault T R, Brown L D et al.. Intrauterine growth restriction increases fetal hepatic gluconeogenic capacity and reduces messenger ribonucleic acid translation initiation and nutrient sensing in fetal liver and skeletal muscle.  Endocrinology. 2009;  150 (7) 3021-3030
  • 10 de Vrijer B, Davidsen M L, Wilkening R B, Anthony R V, Regnault T R. Altered placental and fetal expression of IGFs and IGF-binding proteins associated with intrauterine growth restriction in fetal sheep during early and mid-pregnancy.  Pediatr Res. 2006;  60 (5) 507-512
  • 11 Limesand S W, Rozance P J, Smith D, Hay Jr W W. Increased insulin sensitivity and maintenance of glucose utilization rates in fetal sheep with placental insufficiency and intrauterine growth restriction.  Am J Physiol Endocrinol Metab. 2007;  293 (6) E1716-E1725
  • 12 Ozanne S E, Constância M. Mechanisms of disease: the developmental origins of disease and the role of the epigenotype.  Nat Clin Pract Endocrinol Metab. 2007;  3 (7) 539-546
  • 13 Martin-Gronert M S, Ozanne S E. Experimental IUGR and later diabetes.  J Intern Med. 2007;  261 (5) 437-452
  • 14 Morrison J L, Duffield J A, Muhlhausler B S, Gentili S, McMillen I C. Fetal growth restriction, catch-up growth and the early origins of insulin resistance and visceral obesity.  Pediatr Nephrol. 2010;  25 (4) 669-677
  • 15 Barker D J. The fetal and infant origins of adult disease.  BMJ. 1990;  301 (6761) 1111
  • 16 Paz I, Seidman D S, Danon Y L, Laor A, Stevenson D K, Gale R. Are children born small for gestational age at increased risk of short stature?.  Am J Dis Child. 1993;  147 (3) 337-339
  • 17 Kensara O A, Wootton S A, Phillips D I, Patel M, Jackson A A, Elia M. Hertfordshire Study Group . Fetal programming of body composition: relation between birth weight and body composition measured with dual-energy X-ray absorptiometry and anthropometric methods in older Englishmen.  Am J Clin Nutr. 2005;  82 (5) 980-987
  • 18 Sayer A A, Syddall H E, Dennison E M et al.. Birth weight, weight at 1 y of age, and body composition in older men: findings from the Hertfordshire Cohort Study.  Am J Clin Nutr. 2004;  80 (1) 199-203
  • 19 Smart J L. Critical periods in brain development.  Ciba Found Symp. 1991;  156 109-124 discussion 124-108
  • 20 Lucas A, Morley R, Cole T J. Randomised trial of early diet in preterm babies and later intelligence quotient.  BMJ. 1998;  317 (7171) 1481-1487
  • 21 Casey P H, Whiteside-Mansell L, Barrett K, Bradley R H, Gargus R. Impact of prenatal and/or postnatal growth problems in low birth weight preterm infants on school-age outcomes: an 8-year longitudinal evaluation.  Pediatrics. 2006;  118 (3) 1078-1086
  • 22 Isaacs E B, Gadian D G, Sabatini S et al.. The effect of early human diet on caudate volumes and IQ.  Pediatr Res. 2008;  63 (3) 308-314
  • 23 De Blasio M J, Gatford K L, McMillen I C, Robinson J S, Owens J A. Placental restriction of fetal growth increases insulin action, growth, and adiposity in the young lamb.  Endocrinology. 2007;  148 (3) 1350-1358
  • 24 Wallace J M, Regnault T R, Limesand S W, Hay Jr W W, Anthony R V. Investigating the causes of low birth weight in contrasting ovine paradigms.  J Physiol. 2005;  565 (Pt 1) 19-26
  • 25 Wallace J M, Bourke D A, Aitken R P, Milne J S, Hay Jr W W. Placental glucose transport in growth-restricted pregnancies induced by overnourishing adolescent sheep.  J Physiol. 2003;  547 (Pt 1) 85-94
  • 26 Barry J S, Rozance P J, Anthony R V. An animal model of placental insufficiency-induced intrauterine growth restriction.  Semin Perinatol. 2008;  32 (3) 225-230
  • 27 Eremia S C, de Boo H A, Bloomfield F H, Oliver M H, Harding J E. Fetal and amniotic insulin-like growth factor-I supplements improve growth rate in intrauterine growth restriction fetal sheep.  Endocrinology. 2007;  148 (6) 2963-2972
  • 28 Thureen P J, Trembler K A, Meschia G, Makowski E L, Wilkening R B. Placental glucose transport in heat-induced fetal growth retardation.  Am J Physiol. 1992;  263 (3 Pt 2) R578-R585
  • 29 Bell A W, Wilkening R B, Meschia G. Some aspects of placental function in chronically heat-stressed ewes.  J Dev Physiol. 1987;  9 (1) 17-29
  • 30 Hay Jr W W, Sparks J W, Wilkening R B, Battaglia F C, Meschia G. Fetal glucose uptake and utilization as functions of maternal glucose concentration.  Am J Physiol. 1984;  246 (3 Pt 1) E237-E242
  • 31 Hay Jr W W, Molina R A, DiGiacomo J E, Meschia G. Model of placental glucose consumption and glucose transfer.  Am J Physiol. 1990;  258 (3 Pt 2) R569-R577
  • 32 Aldoretta P W, Carver T D, Hay Jr W W. Ovine uteroplacental glucose and oxygen metabolism in relation to chronic changes in maternal and fetal glucose concentrations.  Placenta. 1994;  15 (7) 753-764
  • 33 Das U G, Schroeder R E, Hay Jr W W, Devaskar S U. Time-dependent and tissue-specific effects of circulating glucose on fetal ovine glucose transporters.  Am J Physiol. 1999;  276 (3 Pt 2) R809-R817
  • 34 Barry J S, Davidsen M L, Limesand S W et al.. Developmental changes in ovine myocardial glucose transporters and insulin signaling following hyperthermia-induced intrauterine fetal growth restriction.  Exp Biol Med (Maywood). 2006;  231 (5) 566-575
  • 35 DiGiacomo J E, Hay Jr W W. Fetal glucose metabolism and oxygen consumption during sustained hypoglycemia.  Metabolism. 1990;  39 (2) 193-202
  • 36 Pardi G, Cetin I, Marconi A M et al.. Diagnostic value of blood sampling in fetuses with growth retardation.  N Engl J Med. 1993;  328 (10) 692-696
  • 37 Marconi A M, Paolini C L, Stramare L et al.. Steady state maternal-fetal leucine enrichments in normal and intrauterine growth-restricted pregnancies.  Pediatr Res. 1999;  46 (1) 114-119
  • 38 Paolini C L, Marconi A M, Ronzoni S et al.. Placental transport of leucine, phenylalanine, glycine, and proline in intrauterine growth-restricted pregnancies.  J Clin Endocrinol Metab. 2001;  86 (11) 5427-5432
  • 39 Carver T D, Quick A A, Teng C C, Pike A W, Fennessey P V, Hay Jr W W. Leucine metabolism in chronically hypoglycemic hypoinsulinemic growth-restricted fetal sheep.  Am J Physiol. 1997;  272 (1 Pt 1) E107-E117
  • 40 Glazier J D, Cetin I, Perugino G et al.. Association between the activity of the system A amino acid transporter in the microvillous plasma membrane of the human placenta and severity of fetal compromise in intrauterine growth restriction.  Pediatr Res. 1997;  42 (4) 514-519
  • 41 de Vrijer B, Regnault T R, Wilkening R B, Meschia G, Battaglia F C. Placental uptake and transport of ACP, a neutral nonmetabolizable amino acid, in an ovine model of fetal growth restriction.  Am J Physiol Endocrinol Metab. 2004;  287 (6) E1114-E1124
  • 42 Limesand S W, Rozance P J, Brown L D, Hay Jr W W. Effects of chronic hypoglycemia and euglycemic correction on lysine metabolism in fetal sheep.  Am J Physiol Endocrinol Metab. 2009;  296 (4) E879-E887
  • 43 van Veen L C, Teng C, Hay Jr W W, Meschia G, Battaglia F C. Leucine disposal and oxidation rates in the fetal lamb.  Metabolism. 1987;  36 (1) 48-53
  • 44 Padoan A, Rigano S, Ferrazzi E, Beaty B L, Battaglia F C, Galan H L. Differences in fat and lean mass proportions in normal and growth-restricted fetuses.  Am J Obstet Gynecol. 2004;  191 (4) 1459-1464
  • 45 Larciprete G, Valensise H, Di Pierro G et al.. Intrauterine growth restriction and fetal body composition.  Ultrasound Obstet Gynecol. 2005;  26 (3) 258-262
  • 46 Lapillonne A, Braillon P, Claris O, Chatelain P G, Delmas P D, Salle B L. Body composition in appropriate and in small for gestational age infants.  Acta Paediatr. 1997;  86 (2) 196-200
  • 47 Hediger M L, Overpeck M D, Kuczmarski R J, McGlynn A, Maurer K R, Davis W W. Muscularity and fatness of infants and young children born small- or large-for-gestational-age.  Pediatrics. 1998;  102 (5) E60
  • 48 Davis T A, Fiorotto M L. Regulation of muscle growth in neonates.  Curr Opin Clin Nutr Metab Care. 2009;  12 (1) 78-85
  • 49 Ten Broek R W, Grefte S, Von den Hoff J W. Regulatory factors and cell populations involved in skeletal muscle regeneration.  J Cell Physiol. 2010;  224 (1) 7-16
  • 50 Widdowson E M, Crabb D E, Milner R D. Cellular development of some human organs before birth.  Arch Dis Child. 1972;  47 (254) 652-655
  • 51 Greenwood P L, Slepetis R M, Hermanson J W, Bell A W. Intrauterine growth retardation is associated with reduced cell cycle activity, but not myofibre number, in ovine fetal muscle.  Reprod Fertil Dev. 1999;  11 (4-5) 281-291
  • 52 Greenwood P L, Hunt A S, Hermanson J W, Bell A W. Effects of birth weight and postnatal nutrition on neonatal sheep: II. Skeletal muscle growth and development.  J Anim Sci. 2000;  78 (1) 50-61
  • 53 Costello P M, Rowlerson A, Astaman N A et al.. Peri-implantation and late gestation maternal undernutrition differentially affect fetal sheep skeletal muscle development.  J Physiol. 2008;  586 (9) 2371-2379
  • 54 Fahey A J, Brameld J M, Parr T, Buttery P J. The effect of maternal undernutrition before muscle differentiation on the muscle fiber development of the newborn lamb.  J Anim Sci. 2005;  83 (11) 2564-2571
  • 55 Zhu M J, Ford S P, Nathanielsz P W, Du M. Effect of maternal nutrient restriction in sheep on the development of fetal skeletal muscle.  Biol Reprod. 2004;  71 (6) 1968-1973
  • 56 Zhu M J, Ford S P, Means W J, Hess B W, Nathanielsz P W, Du M. Maternal nutrient restriction affects properties of skeletal muscle in offspring.  J Physiol. 2006;  575 (Pt 1) 241-250
  • 57 De Blasio M J, Gatford K L, Robinson J S, Owens J A. Placental restriction of fetal growth reduces size at birth and alters postnatal growth, feeding activity, and adiposity in the young lamb.  Am J Physiol Regul Integr Comp Physiol. 2007;  292 (2) R875-R886
  • 58 Wallace J M, Milne J S, Aitken R P, Hay Jr W W. Sensitivity to metabolic signals in late-gestation growth-restricted fetuses from rapidly growing adolescent sheep.  Am J Physiol Endocrinol Metab. 2007;  293 (5) E1233-E1241
  • 59 Gale C R, Martyn C N, Kellingray S, Eastell R, Cooper C. Intrauterine programming of adult body composition.  J Clin Endocrinol Metab. 2001;  86 (1) 267-272
  • 60 Inskip H M, Godfrey K M, Martin H J, Simmonds S J, Cooper C, Sayer A A. Southampton Women's Survey Study Group . Size at birth and its relation to muscle strength in young adult women.  J Intern Med. 2007;  262 (3) 368-374
  • 61 Ylihärsilä H, Kajantie E, Osmond C, Forsén T, Barker D J, Eriksson J G. Birth size, adult body composition and muscle strength in later life.  Int J Obes (Lond). 2007;  31 (9) 1392-1399
  • 62 Harper J M, Soar J B, Buttery P J. Changes in protein metabolism of ovine primary muscle cultures on treatment with growth hormone, insulin, insulin-like growth factor I or epidermal growth factor.  J Endocrinol. 1987;  112 (1) 87-96
  • 63 Economides D L, Nicolaides K H, Campbell S. Metabolic and endocrine findings in appropriate and small for gestational age fetuses.  J Perinat Med. 1991;  19 (1–2) 97-105
  • 64 Boyle D W, Denne S C, Moorehead H, Lee W H, Bowsher R R, Liechty E A. Effect of rhIGF-I infusion on whole fetal and fetal skeletal muscle protein metabolism in sheep.  Am J Physiol. 1998;  275 (6 Pt 1) E1082-E1091
  • 65 Liechty E A, Boyle D W, Moorehead H, Lee W H, Yang X L, Denne S C. Glucose and amino acid kinetic response to graded infusion of rhIGF-I in the late gestation ovine fetus.  Am J Physiol. 1999;  277 (3 Pt 1) E537-E543
  • 66 Milley J R. Effects of insulin on ovine fetal leucine kinetics and protein metabolism.  J Clin Invest. 1994;  93 (4) 1616-1624
  • 67 Shen W, Wisniowski P, Ahmed L, Boyle D W, Denne S C, Liechty E A. Protein anabolic effects of insulin and IGF-I in the ovine fetus.  Am J Physiol Endocrinol Metab. 2003;  284 (4) E748-E756
  • 68 Brown L D, Hay Jr W W. Effect of hyperinsulinemia on amino acid utilization and oxidation independent of glucose metabolism in the ovine fetus.  Am J Physiol Endocrinol Metab. 2006;  291 (6) E1333-E1340
  • 69 Rosenthal S M, Cheng Z Q. Opposing early and late effects of insulin-like growth factor I on differentiation and the cell cycle regulatory retinoblastoma protein in skeletal myoblasts.  Proc Natl Acad Sci U S A. 1995;  92 (22) 10307-10311
  • 70 Liu J P, Baker J, Perkins A S, Robertson E J, Efstratiadis A. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r).  Cell. 1993;  75 (1) 59-72
  • 71 Molkentin J D, Olson E N. Defining the regulatory networks for muscle development.  Curr Opin Genet Dev. 1996;  6 (4) 445-453
  • 72 Barton E R. The ABCs of IGF-I isoforms: impact on muscle hypertrophy and implications for repair.  Appl Physiol Nutr Metab. 2006;  31 (6) 791-797
  • 73 Karalaki M, Fili S, Philippou A, Koutsilieris M. Muscle regeneration: cellular and molecular events.  In Vivo. 2009;  23 (5) 779-796
  • 74 Brown L D, Rozance P J, Barry J S, Friedman J E, Hay Jr W W. Insulin is required for amino acid stimulation of dual pathways for translational control in skeletal muscle in the late-gestation ovine fetus.  Am J Physiol Endocrinol Metab. 2009;  296 (1) E56-E63
  • 75 Lemons J A, Adcock III E W, Jones Jr M D, Naughton M A, Meschia G, Battaglia F C. Umbilical uptake of amino acids in the unstressed fetal lamb.  J Clin Invest. 1976;  58 (6) 1428-1434
  • 76 Shaw R J, Cantley L C. Ras, PI (3)K and mTOR signalling controls tumour cell growth.  Nature. 2006;  441 (7092) 424-430
  • 77 Wullschleger S, Loewith R, Hall M N. TOR signaling in growth and metabolism.  Cell. 2006;  124 (3) 471-484
  • 78 Calera M R, Pilch P F. Induction of Akt-2 correlates with differentiation in Sol8 muscle cells.  Biochem Biophys Res Commun. 1998;  251 (3) 835-841
  • 79 Vandromme M, Rochat A, Meier R et al.. Protein kinase B beta/Akt2 plays a specific role in muscle differentiation.  J Biol Chem. 2001;  276 (11) 8173-8179
  • 80 Sumitani S, Goya K, Testa J R, Kouhara H, Kasayama S. Akt1 and Akt2 differently regulate muscle creatine kinase and myogenin gene transcription in insulin-induced differentiation of C2C12 myoblasts.  Endocrinology. 2002;  143 (3) 820-828
  • 81 Tureckova J, Wilson E M, Cappalonga J L, Rotwein P. Insulin-like growth factor-mediated muscle differentiation: collaboration between phosphatidylinositol 3-kinase-Akt-signaling pathways and myogenin.  J Biol Chem. 2001;  276 (42) 39264-39270
  • 82 Barton E R, Morris L, Musaro A, Rosenthal N, Sweeney H L. Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice.  J Cell Biol. 2002;  157 (1) 137-148
  • 83 Bouzakri K, Karlsson H K, Vestergaard H, Madsbad S, Christiansen E, Zierath J R. IRS-1 serine phosphorylation and insulin resistance in skeletal muscle from pancreas transplant recipients.  Diabetes. 2006;  55 (3) 785-791
  • 84 Yang Z Z, Tschopp O, Baudry A, Dümmler B, Hynx D, Hemmings B A. Physiological functions of protein kinase B/Akt.  Biochem Soc Trans. 2004;  32 (Pt 2) 350-354
  • 85 Nieto-Díaz A, Villar J, Matorras-Weinig R, Valenzuela-Ruìz P. Intrauterine growth retardation at term: association between anthropometric and endocrine parameters.  Acta Obstet Gynecol Scand. 1996;  75 (2) 127-131
  • 86 Nicolini U, Hubinont C, Santolaya J, Fisk N M, Rodeck C H. Effects of fetal intravenous glucose challenge in normal and growth retarded fetuses.  Horm Metab Res. 1990;  22 (8) 426-430
  • 87 Van Assche F A, De Prins F, Aerts L, Verjans M. The endocrine pancreas in small-for-dates infants.  Br J Obstet Gynaecol. 1977;  84 (10) 751-753
  • 88 Béringue F, Blondeau B, Castellotti M C, Bréant B, Czernichow P, Polak M. Endocrine pancreas development in growth-retarded human fetuses.  Diabetes. 2002;  51 (2) 385-391
  • 89 Butler A E, Janson J, Bonner-Weir S, Ritzel R, Rizza R A, Butler P C. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes.  Diabetes. 2003;  52 (1) 102-110
  • 90 Polonsky K S, Sturis J, Bell G I. Seminars in Medicine of the Beth Israel Hospital, Boston. Non-insulin-dependent diabetes mellitus—a genetically programmed failure of the beta cell to compensate for insulin resistance.  N Engl J Med. 1996;  334 (12) 777-783
  • 91 Green A S, Rozance P J, Limesand S W. Consequences of a compromised intrauterine environment on islet function.  J Endocrinol. 2010;  205 (3) 211-224
  • 92 Limesand S W, Rozance P J, Zerbe G O, Hutton J C, Hay Jr W W. Attenuated insulin release and storage in fetal sheep pancreatic islets with intrauterine growth restriction.  Endocrinology. 2006;  147 (3) 1488-1497
  • 93 Limesand S W, Jensen J, Hutton J C, Hay Jr W W. Diminished beta-cell replication contributes to reduced beta-cell mass in fetal sheep with intrauterine growth restriction.  Am J Physiol Regul Integr Comp Physiol. 2005;  288 (5) R1297-R1305
  • 94 Carver T D, Anderson S M, Aldoretta P W, Hay Jr W W. Effect of low-level basal plus marked “pulsatile” hyperglycemia on insulin secretion in fetal sheep.  Am J Physiol. 1996;  271 (5 Pt 1) E865-E871
  • 95 Rozance P J, Limesand S W, Zerbe G O, Hay Jr W W. Chronic fetal hypoglycemia inhibits the later steps of stimulus-secretion coupling in pancreatic beta-cells.  Am J Physiol Endocrinol Metab. 2007;  292 (5) E1256-E1264
  • 96 Limesand S W, Hay Jr W W. Adaptation of ovine fetal pancreatic insulin secretion to chronic hypoglycaemia and euglycaemic correction.  J Physiol. 2003;  547 (Pt 1) 95-105
  • 97 Dionne K E, Colton C K, Yarmush M L. Effect of hypoxia on insulin secretion by isolated rat and canine islets of Langerhans.  Diabetes. 1993;  42 (1) 12-21
  • 98 Milley J R. Ovine fetal metabolism during norepinephrine infusion.  Am J Physiol. 1997;  273 (2 Pt 1) E336-E347
  • 99 Cheung C Y. Fetal adrenal medulla catecholamine response to hypoxia—direct and neural components.  Am J Physiol. 1990;  258 (6 Pt 2) R1340-R1346
  • 100 Jackson B T, Piasecki G J, Cohn H E, Cohen W R. Control of fetal insulin secretion.  Am J Physiol Regul Integr Comp Physiol. 2000;  279 (6) R2179-R2188
  • 101 Leos R A, Anderson M J, Chen X, Pugmire J, Anderson K A, Limesand S W. Chronic exposure to elevated norepinephrine suppresses insulin secretion in fetal sheep with placental insufficiency and intrauterine growth restriction.  Am J Physiol Endocrinol Metab. 2010;  298 (4) E770-E778
  • 102 Gentili S, Morrison J L, McMillen I C. Intrauterine growth restriction and differential patterns of hepatic growth and expression of IGF1, PCK2, and HSDL1 mRNA in the sheep fetus in late gestation.  Biol Reprod. 2009;  80 (6) 1121-1127
  • 103 Narkewicz M R, Carver T D, Hay Jr W W. Induction of cytosolic phosphoenolpyruvate carboxykinase in the ovine fetal liver by chronic fetal hypoglycemia and hypoinsulinemia.  Pediatr Res. 1993;  33 (5) 493-496
  • 104 Rozance P J, Limesand S W, Barry J S et al.. Chronic late-gestation hypoglycemia upregulates hepatic PEPCK associated with increased PGC1alpha mRNA and phosphorylated CREB in fetal sheep.  Am J Physiol Endocrinol Metab. 2008;  294 (2) E365-E370
  • 105 Ford S P, Hess B W, Schwope M M et al.. Maternal undernutrition during early to mid-gestation in the ewe results in altered growth, adiposity, and glucose tolerance in male offspring.  J Anim Sci. 2007;  85 (5) 1285-1294
  • 106 Vuguin P, Raab E, Liu B, Barzilai N, Simmons R. Hepatic insulin resistance precedes the development of diabetes in a model of intrauterine growth retardation.  Diabetes. 2004;  53 (10) 2617-2622
  • 107 Ozanne S E, Smith G D, Tikerpae J, Hales C N. Altered regulation of hepatic glucose output in the male offspring of protein-malnourished rat dams.  Am J Physiol. 1996;  270 (4 Pt 1) E559-E564
  • 108 Lane R H, Flozak A S, Ogata E S, Bell G I, Simmons R A. Altered hepatic gene expression of enzymes involved in energy metabolism in the growth-retarded fetal rat.  Pediatr Res. 1996;  39 (3) 390-394
  • 109 Desai M, Byrne C D, Zhang J, Petry C J, Lucas A, Hales C N. Programming of hepatic insulin-sensitive enzymes in offspring of rat dams fed a protein-restricted diet.  Am J Physiol. 1997;  272 (5 Pt 1) G1083-G1090
  • 110 Ozanne S E, Wang C L, Coleman N, Smith G D. Altered muscle insulin sensitivity in the male offspring of protein-malnourished rats.  Am J Physiol. 1996;  271 (6 Pt 1) E1128-E1134
  • 111 Feinberg A P. Phenotypic plasticity and the epigenetics of human disease.  Nature. 2007;  447 (7143) 433-440
  • 112 Burdge G C, Hanson M A, Slater-Jefferies J L, Lillycrop K A. Epigenetic regulation of transcription: a mechanism for inducing variations in phenotype (fetal programming) by differences in nutrition during early life?.  Br J Nutr. 2007;  97 (6) 1036-1046
  • 113 Yang T, Fu M, Pestell R, Sauve A A. SIRT1 and endocrine signaling.  Trends Endocrinol Metab. 2006;  17 (5) 186-191
  • 114 Yang J, Reshef L, Cassuto H, Aleman G, Hanson R W. Aspects of the control of phosphoenolpyruvate carboxykinase gene transcription.  J Biol Chem. 2009;  284 (40) 27031-27035
  • 115 Benvenisty N, Mencher D, Meyuhas O, Razin A, Reshef L. Sequential changes in DNA methylation patterns of the rat phosphoenolpyruvate carboxykinase gene during development.  Proc Natl Acad Sci U S A. 1985;  82 (2) 267-271
  • 116 Benvenisty N, Reshef L. Developmental acquisition of DNase I sensitivity of the phosphoenolpyruvate carboxykinase (GTP) gene in rat liver.  Proc Natl Acad Sci U S A. 1987;  84 (5) 1132-1136
  • 117 Benvenisty N, Szyf M, Mencher D, Razin A, Reshef L. Tissue-specific hypomethylation and expression of rat phosphoenolpyruvate carboxykinase gene induced by in vivo treatment of fetuses and neonates with 5-azacytidine.  Biochemistry. 1985;  24 (19) 5015-5019
  • 118 Trus M, Benvenisty N, Cohen H, Reshef L. Developmentally regulated interactions of liver nuclear factors with the rat phosphoenolpyruvate carboxykinase promoter.  Mol Cell Biol. 1990;  10 (5) 2418-2422
  • 119 Nijland M J, Mitsuya K, Li C et al.. Epigenetic modification of fetal baboon hepatic phosphoenolpyruvate carboxykinase following exposure to moderately reduced nutrient availability.  J Physiol. 2010;  588 (Pt 8) 1349-1359
  • 120 MacLennan N K, James S J, Melnyk S et al.. Uteroplacental insufficiency alters DNA methylation, one-carbon metabolism, and histone acetylation in IUGR rats.  Physiol Genomics. 2004;  18 (1) 43-50
  • 121 Fu Q, McKnight R A, Yu X, Wang L, Callaway C W, Lane R H. Uteroplacental insufficiency induces site-specific changes in histone H3 covalent modifications and affects DNA-histone H3 positioning in day 0 IUGR rat liver.  Physiol Genomics. 2004;  20 (1) 108-116
  • 122 Lillycrop K A, Phillips E S, Jackson A A, Hanson M A, Burdge G C. Dietary protein restriction of pregnant rats induces and folic acid supplementation prevents epigenetic modification of hepatic gene expression in the offspring.  J Nutr. 2005;  135 (6) 1382-1386
  • 123 Lillycrop K A, Slater-Jefferies J L, Hanson M A, Godfrey K M, Jackson A A, Burdge G C. Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications.  Br J Nutr. 2007;  97 (6) 1064-1073
  • 124 Owens J A, Gatford K L, De Blasio M J, Edwards L J, McMillen I C, Fowden A L. Restriction of placental growth in sheep impairs insulin secretion but not sensitivity before birth.  J Physiol. 2007;  584 (Pt 3) 935-949

William W HayJr. 

Professor of Pediatrics, University of Colorado School of Medicine, Perinatal Research Center

F441, 13243 East 23rd Avenue, Aurora, CO 80045

Email: bill.hay@ucdenver.edu