Semin Reprod Med 2011; 29(3): 266-276
DOI: 10.1055/s-0031-1275521
© Thieme Medical Publishers

Metabolic Imprinting by Prenatal, Perinatal, and Postnatal Overnutrition: A Review

Jennifer Shine Dyer1 , Charles R. Rosenfeld2
  • 1Division of Endocrinology, Department of Pediatrics, Center for Clinical and Translational Research, The Ohio State University College of Medicine, Columbus, Ohio
  • 2George L. MacGregor Professor of Pediatrics and Professor of Obstetrics/Gynecology, Division of Neonatal-Perinatal Medicine, Coordinator for Departmental Subspecialty Training, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas
Further Information

Publication History

Publication Date:
18 July 2011 (online)

ABSTRACT

Epidemiological studies have suggested that metabolic programming is one of the critical factors contributing to the etiology of obesity as well as concurrent increase in related chronic diseases (e.g., type 2 diabetes and cardiovascular disease). Metabolic programming is the phenomenon whereby a nutritional stress/stimulus applied during critical periods of early development permanently alters an organism's physiology and metabolism, the consequences of which are often observed much later in life. The idea of metabolic programming originated from the fetal origins hypothesis proposed by Barker in which he suggested that disproportionate size at birth of the newborn due to an adverse intrauterine environment correlated well with an increased risk of adult-onset ill health outcomes (type 2 diabetes, hypertension, and cardiovascular disease). The fetal origins hypothesis, proposed by Barker, suggests that adequate nutrition during fetal development is critical. Overnutrition is a form of malnutrition that has increased in the United States over the past several decades in which nutrients are oversupplied relative to the amounts required for normal growth, development, and metabolism. Evidence for the effects of maternal obesity and overnutrition on metabolic programming is reviewed during critical prenatal, perinatal, and postnatal periods.

REFERENCES

  • 1 Freedman D S, Khan L K, Serdula M K, Ogden C L, Dietz W H. Racial and ethnic differences in secular trends for childhood BMI, weight, and height.  Obesity (Silver Spring). 2006;  14 (2) 301-308
  • 2 Hedley A A, Ogden C L, Johnson C L, Carroll M D, Curtin L R, Flegal K M. Prevalence of overweight and obesity among US children, adolescents, and adults, 1999-2002.  JAMA. 2004;  291 (23) 2847-2850
  • 3 Ogden C L, Carroll M D, Curtin L R, McDowell M A, Tabak C J, Flegal K M. Prevalence of overweight and obesity in the United States, 1999-2004.  JAMA. 2006;  295 (13) 1549-1555
  • 4 Jones K L. Role of obesity in complicating and confusing the diagnosis and treatment of diabetes in children.  Pediatrics. 2008;  121 (2) 361-368
  • 5 Rewers M, LaPorte R E, King H, Tuomilehto J. Trends in the prevalence and incidence of diabetes: insulin-dependent diabetes mellitus in childhood.  World Health Stat Q. 1988;  41 (3–4) 179-189
  • 6 Dabelea D, Hanson R L, Bennett P H, Roumain J, Knowler W C, Pettitt D J. Increasing prevalence of type II diabetes in American Indian children.  Diabetologia. 1998;  41 (8) 904-910
  • 7 Dabelea D, Pettitt D J, Jones K L, Arslanian S A. Type 2 diabetes mellitus in minority children and adolescents. An emerging problem.  Endocrinol Metab Clin North Am. 1999;  28 (4) 709-729, viii viii
  • 8 Pihoker C, Scott C R, Lensing S Y, Cradock M M, Smith J. Non-insulin dependent diabetes mellitus in African-American youths of Arkansas.  Clin Pediatr (Phila). 1998;  37 (2) 97-102
  • 9 Pinhas-Hamiel O, Dolan L M, Daniels S R, Standiford D, Khoury P R, Zeitler P. Increased incidence of non-insulin-dependent diabetes mellitus among adolescents.  J Pediatr. 1996;  128 (5 Pt 1) 608-615
  • 10 Scott C R, Smith J M, Cradock M M, Pihoker C. Characteristics of youth-onset noninsulin-dependent diabetes mellitus and insulin-dependent diabetes mellitus at diagnosis.  Pediatrics. 1997;  100 (1) 84-91
  • 11 Liese A D, D'Agostino Jr R B, Hamman R F SEARCH for Diabetes in Youth Study Group et al. The burden of diabetes mellitus among US youth: prevalence estimates from the SEARCH for Diabetes in Youth Study.  Pediatrics. 2006;  118 (4) 1510-1518
  • 12 Wojcicki J M, Heyman M B. Let's Move—childhood obesity prevention from pregnancy and infancy onward.  N Engl J Med. 2010;  362 (16) 1457-1459
  • 13 Skinner A C, Steiner M J, Henderson F W, Perrin E M. Multiple markers of inflammation and weight status: cross-sectional analyses throughout childhood.  Pediatrics. 2010;  125 (4) e801-e809
  • 14 Dyer J S, Rosenfeld C R, Rice J, Rice M, Hardin D S. Insulin resistance in Hispanic large-for-gestational-age neonates at birth.  J Clin Endocrinol Metab. 2007;  92 (10) 3836-3843
  • 15 Barker D J. Fetal origins of coronary heart disease.  BMJ. 1995;  311 (6998) 171-174
  • 16 Dabelea D, Pettitt D J, Hanson R L, Imperatore G, Bennett P H, Knowler W C. Birth weight, type 2 diabetes, and insulin resistance in Pima Indian children and young adults.  Diabetes Care. 1999;  22 (6) 944-950
  • 17 Pettitt D J, Aleck K A, Baird H R, Carraher M J, Bennett P H, Knowler W C. Congenital susceptibility to NIDDM. Role of intrauterine environment.  Diabetes. 1988;  37 (5) 622-628
  • 18 Eriksson J G, Forsen T J, Osmond C, Barker D JP. Pathways of infant and childhood growth that lead to type 2 diabetes.  Diabetes Care. 2003;  26 (11) 3006-3010
  • 19 Lithell H O, McKeigue P M, Berglund L, Mohsen R, Lithell U B, Leon D A. Relation of size at birth to non-insulin dependent diabetes and insulin concentrations in men aged 50-60 years.  BMJ. 1996;  312 (7028) 406-410
  • 20 Wei J N, Sung F C, Li C Y et al.. Low birth weight and high birth weight infants are both at an increased risk to have type 2 diabetes among schoolchildren in Taiwan.  Diabetes Care. 2003;  26 (2) 343-348
  • 21 Eriksson J G, Forsén T, Tuomilehto J, Jaddoe V WV, Osmond C, Barker D JP. Effects of size at birth and childhood growth on the insulin resistance syndrome in elderly individuals.  Diabetologia. 2002;  45 (3) 342-348
  • 22 Eriksson J G, Forsén T, Tuomilehto J, Osmond C, Barker D JP. Early growth and coronary heart disease in later life: longitudinal study.  BMJ. 2001;  322 (7292) 949-953
  • 23 Srinivasan M, Laychock S G, Hill D J, Patel M S. Neonatal nutrition: metabolic programming of pancreatic islets and obesity.  Exp Biol Med (Maywood). 2003;  228 (1) 15-23
  • 24 Fraser A, Tilling K, Macdonald-Wallis C et al.. Association of maternal weight gain in pregnancy with offspring obesity and metabolic and vascular traits in childhood.  Circulation. 2010;  121 (23) 2557-2564
  • 25 Catalano P M. Obesity, insulin resistance, and pregnancy outcome.  Reproduction. 2010;  140 (3) 365-371
  • 26 Rasmussen K M, Yaktine A L, eds. Weight Gain During Pregnancy: Reexamining the Guidelines. Washington, DC: National Academies Press; 2009
  • 27 Dabelea D, Pettitt D J. Intrauterine diabetic environment confers risks for type 2 diabetes mellitus and obesity in the offspring, in addition to genetic susceptibility.  J Pediatr Endocrinol Metab. 2001;  14 (8) 1085-1091
  • 28 Pettitt D J, Baird H R, Aleck K A, Bennett P H, Knowler W C. Excessive obesity in offspring of Pima Indian women with diabetes during pregnancy.  N Engl J Med. 1983;  308 (5) 242-245
  • 29 Pettitt D J, Knowler W C, Bennett P H, Aleck K A, Baird H R. Obesity in offspring of diabetic Pima Indian women despite normal birth weight.  Diabetes Care. 1987;  10 (1) 76-80
  • 30 Silverman B L, Rizzo T A, Cho N H, Metzger B E. The Northwestern University Diabetes in Pregnancy Center . Long-term effects of the intrauterine environment.  Diabetes Care. 1998;  21 (Suppl 2) B142-B149
  • 31 Vohr B R, McGarvey S T, Tucker R. Effects of maternal gestational diabetes on offspring adiposity at 4-7 years of age.  Diabetes Care. 1999;  22 (8) 1284-1291
  • 32 Centers for Disease Control and Prevention .Diabetes and Women's Health Across the Life Stages: A Public Health Perspective. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention; 2001
  • 33 Pettitt D J, Aleck K A, Baird H R, Carraher M J, Bennett P H, Knowler W C. Congenital susceptibility to NIDDM. Role of intrauterine environment.  Diabetes. 1988;  37 (5) 622-628
  • 34 Metzger B E, Buchanan T A, Coustan D R et al.. Summary and recommendations of the Fifth International Workshop-Conference on Gestational Diabetes Mellitus.  Diabetes Care. 2007;  30 (Suppl 2) S251-S260
  • 35 DeFronzo R A, Bonadonna R C, Ferrannini E. Pathogenesis of NIDDM. A balanced overview.  Diabetes Care. 1992;  15 (3) 318-368
  • 36 Karam J H. Reversible insulin resistance in non-insulin-dependent diabetes mellitus.  Horm Metab Res. 1996;  28 (9) 440-444
  • 37 Lyssenko V, Almgren P, Anevski D Botnia study group et al. Predictors of and longitudinal changes in insulin sensitivity and secretion preceding onset of type 2 diabetes.  Diabetes. 2005;  54 (1) 166-174
  • 38 Catalano P M, Tyzbir E D, Roman N M, Amini S B, Sims E A. Longitudinal changes in insulin release and insulin resistance in nonobese pregnant women.  Am J Obstet Gynecol. 1991;  165 (6 Pt 1) 1667-1672
  • 39 Catalano P M, Huston L, Amini S B, Kalhan S C. Longitudinal changes in glucose metabolism during pregnancy in obese women with normal glucose tolerance and gestational diabetes mellitus.  Am J Obstet Gynecol. 1999;  180 (4) 903-916
  • 40 Catalano P M, Ehrenberg H M. The short- and long-term implications of maternal obesity on the mother and her offspring.  BJOG. 2006;  113 (10) 1126-1133
  • 41 Center for Disease Control and Prevention .National Diabetes Fact Sheet. Atlanta, GA: Center for Disease Control and Prevention; 2007
  • 42 Metzger B E, Gabbe S G, Persson B International Association of Diabetes and Pregnancy Study Groups Consensus Panel et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy.  Diabetes Care. 2010;  33 (3) 676-682
  • 43 Kim C, Newton K M, Knopp R H. Gestational diabetes and the incidence of type 2 diabetes: a systematic review.  Diabetes Care. 2002;  25 (10) 1862-1868
  • 44 Metzger B E, Lowe L P, Dyer A R HAPO Study Cooperative Research Group et al. Hyperglycemia and adverse pregnancy outcomes.  N Engl J Med. 2008;  358 (19) 1991-2002
  • 45 Langer O, Yogev Y, Xenakis E M, Rosenn B. Insulin and glyburide therapy: dosage, severity level of gestational diabetes, and pregnancy outcome.  Am J Obstet Gynecol. 2005;  192 (1) 134-139
  • 46 Dabelea D. The predisposition to obesity and diabetes in offspring of diabetic mothers.  Diabetes Care. 2007;  30 (Suppl 2) S169-S174
  • 47 Vohr B R, McGarvey S T, Tucker R. Effects of maternal gestational diabetes on offspring adiposity at 4-7 years of age.  Diabetes Care. 1999;  22 (8) 1284-1291
  • 48 Schaefer-Graf U M, Pawliczak J, Passow D et al.. Birth weight and parental BMI predict overweight in children from mothers with gestational diabetes.  Diabetes Care. 2005;  28 (7) 1745-1750
  • 49 Crowther C A, Hiller J E, Moss J R, McPhee A J, Jeffries W S, Robinson J S. Australian Carbohydrate Intolerance Study in Pregnant Women (ACHOIS) Trial Group . Effect of treatment of gestational diabetes mellitus on pregnancy outcomes.  N Engl J Med. 2005;  352 (24) 2477-2486
  • 50 O'Sullivan J B, Gellis S S, Dandrow R V, Tenney B O. The potential diabetic and her treatment in pregnancy.  Obstet Gynecol. 1966;  27 (5) 683-689
  • 51 Hillier T A, Pedula K L, Schmidt M M, Mullen J A, Charles M A, Pettitt D J. Childhood obesity and metabolic imprinting: the ongoing effects of maternal hyperglycemia.  Diabetes Care. 2007;  30 (9) 2287-2292
  • 52 Pettitt D J, Knowler W C, Bennett P H, Aleck K A, Baird H R. Obesity in offspring of diabetic Pima Indian women despite normal birth weight.  Diabetes Care. 1987;  10 (1) 76-80
  • 53 Catalano P M, Farrell K, Thomas A et al.. Perinatal risk factors for childhood obesity and metabolic dysregulation.  Am J Clin Nutr. 2009;  90 (5) 1303-1313
  • 54 Catalano P M, Thomas A, Huston-Presley L, Amini S B. Increased fetal adiposity: a very sensitive marker of abnormal in utero development.  Am J Obstet Gynecol. 2003;  189 (6) 1698-1704
  • 55 Sewell M F, Huston-Presley L, Super D M, Catalano P M. Increased neonatal fat mass, not lean body mass, is associated with maternal obesity.  Am J Obstet Gynecol. 2006;  195 (4) 1100-1103
  • 56 Catalano P M, Drago N M, Amini S B. Maternal carbohydrate metabolism and its relationship to fetal growth and body composition.  Am J Obstet Gynecol. 1995;  172 (5) 1464-1470
  • 57 Boerschmann H, Pflüger M, Henneberger L, Ziegler A G, Hummel S. Prevalence and predictors of overweight and insulin resistance in offspring of mothers with gestational diabetes mellitus.  Diabetes Care. 2010;  33 (8) 1845-1849
  • 58 Frazao E, ed. America's eating habits: changes and consequences [Agricultural Informational Bulletin No. 750]. Washington, DC: U.S. Department of Agriculture/Economic Research Service; 1999
  • 59 Guo F, Jen K L. High-fat feeding during pregnancy and lactation affects offspring metabolism in rats.  Physiol Behav. 1995;  57 (4) 681-686
  • 60 Holemans K, Caluwaerts S, Poston L, Van Assche F A. Diet-induced obesity in the rat: a model for gestational diabetes mellitus.  Am J Obstet Gynecol. 2004;  190 (3) 858-865
  • 61 Accurso A, Bernstein R K, Dahlqvist A et al.. Dietary carbohydrate restriction in type 2 diabetes mellitus and metabolic syndrome: time for a critical appraisal.  Nutr Metab (Lond). 2008;  5 (5) 9
  • 62 Reaven G M. Effect of dietary carbohydrate on the metabolism of patients with non-insulin dependent diabetes mellitus.  Nutr Rev. 1986;  44 (2) 65-73
  • 63 Garg A, Bantle J P, Henry R R et al.. Effects of varying carbohydrate content of diet in patients with non-insulin-dependent diabetes mellitus.  JAMA. 1994;  271 (18) 1421-1428
  • 64 Kaung H L. Growth dynamics of pancreatic islet cell populations during fetal and neonatal development of the rat.  Dev Dyn. 1994;  200 (2) 163-175
  • 65 Patel M S, Srinivasan M. Metabolic programming: causes and consequences.  J Biol Chem. 2002;  277 (3) 1629-1632
  • 66 Raab E L, Vuguin P M, Stoffers D A, Simmons R A. Neonatal exendin-4 treatment reduces oxidative stress and prevents hepatic insulin resistance in intrauterine growth-retarded rats.  Am J Physiol Regul Integr Comp Physiol. 2009;  297 (6) R1785-R1794
  • 67 Pettitt D J, Forman M R, Hanson R L, Knowler W C, Bennett P H. Breastfeeding and incidence of non-insulin-dependent diabetes mellitus in Pima Indians.  Lancet. 1997;  350 (9072) 166-168
  • 68 Yajnik C S. Early life origins of insulin resistance and type 2 diabetes in India and other Asian countries.  J Nutr. 2004;  134 (1) 205-210
  • 69 Elks C E, Loos R J, Sharp S J et al.. Genetic markers of adult obesity risk are associated with greater early infancy weight gain and growth.  PLoS Med. 2010;  7 (5) e1000284
  • 70 Dewey K G. Growth characteristics of breast-fed compared to formula-fed infants.  Biol Neonate. 1998;  74 (2) 94-105
  • 71 Stettler N, Stallings V A, Troxel A B et al.. Weight gain in the first week of life and overweight in adulthood: a cohort study of European American subjects fed infant formula.  Circulation. 2005;  111 (15) 1897-1903
  • 72 Knowler W C, Barrett-Connor E, Fowler S E Diabetes Prevention Program Research Group et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin.  N Engl J Med. 2002;  346 (6) 393-403
  • 73 Vadlamudi S, Kalhan S C, Patel M S. Persistence of metabolic consequences in the progeny of rats fed a HC formula in their early postnatal life.  Am J Physiol. 1995;  269 (4 Pt 1) E731-E738
  • 74 Monk M. Epigenetic programming of differential gene expression in development and evolution.  Dev Genet. 1995;  17 (3) 188-197
  • 75 Jacob R A. Folate, DNA methylation, and gene expression: factors of nature and nurture.  Am J Clin Nutr. 2000;  72 (4) 903-904

Charles R RosenfeldM.D. 

George L. MacGregor Professor of Pediatrics and Professor of Obstetrics/Gynecology

UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, TX 75390-9063

Email: charles.rosenfeld@utsouthwestern.edu