Subscribe to RSS
DOI: 10.1055/s-0031-1280463
Circulating Tumor Cells in Early-Stage Breast Cancer
Klinische Relevanz von zirkulierenden Tumorzellen beim MammakarzinomPublication History
received 28 November 2011
revised 04 December 2011
accepted 04 December 2011
Publication Date:
22 December 2011 (online)
Abstract
Disseminated tumor cells (DTC) are routinely detected in bone marrow (BM) in 30–40 % of primary breast cancer patients. Positive BM status at the time of diagnosis as well as DTC persistence after therapy are strong independent prognostic factors. Since repeated BM aspirations are not well tolerated, detection of single tumor cells in peripheral blood (circulating tumor cells; CTC) have become of interest in recent years. CTC are found in 10–80 % breast cancer patients. Variability can be explained by stage of the disease and detection method. Emerging data have shown CTC to be of prognostic relevance for both, patients with primary and metastatic disease. The assessment of CTC in blood may become an important biomarker for prognostication and therapy monitoring. Determination of their molecular characteristics will enable specific targeting of minimal residual as well as metastatic disease. This review summarizes recent research and future perspectives.
Zusammenfassung
Disseminierte Tumorzellen im Knochenmark können in 30–40 % aller Patientinnen mit primärem Mammakarzinom entdeckt werden. Der Nachweis von disseminierten Tumorzellen zum Zeitpunkt der Erstdiagnose, aber auch die Persistenz derselben unter einer Therapie sind ungünstige prognostische Faktoren. Die Praktikabilität von wiederholten Knochenmarkspunktionen unter einer Therapie ist jedoch zeit- und kostenintensiv und für die Patientin unangenehm. Deswegen bietet die Untersuchung von peripherem Blut deutliche Vorteile. Zirkulierende Tumorzellen können in 10–80 % aller Patientinnen entdeckt werden. Die Rate hängt von der Analysemethode und dem Stadium der Erkrankung ab. Es konnte bereits nachgewiesen werden, dass das Vorhandensein von Tumorzellen im peripheren Blut sowohl für Patientinnen mit Metastasen als auch für Patientinnen ohne Metastasen von prognostischer Bedeutung ist. Eine molekulare Charakterisierung der zirkulierenden Tumorzellen könnte weiterhelfen, spezifische Therapien zu entwicklen, die sich direkt gegen diese Tumorzellen richten und so helfen, diese zu eliminieren. Dieser Übersichtsartikel fasst die aktuelle Literatur zusammen und gibt eine Zukunftsperspektive zu dem Thema.
Schlüsselwörter
Brustkrebs - disseminierte Tumorzellen - zirkulierende Tumorzellen - Prognose - BiomarkerFootnote
* equally contributed
-
References
- 1 Ashworth TR. A case of cancer in which cells similar to those in tumors were seen in the blood after death. Aust Med J 1869; 14: 146
- 2 Paget S. Distribution of secondary growths in cancer of the breast. Lancet 1889; 1: 571
- 3 Gebauer G, Fehm T, Merkle E et al. Epithelial cells in bone marrow of breast cancer patients at time of primary surgery: clinical outcome during long-term follow-up. J Clin Oncol 2001; 19: 3669-3674
- 4 Allard WJ, Matera J, Miller MC et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res 2004; 10: 6897-6904
- 5 Banys M, Solomayer EF, Becker S et al. Disseminated tumor cells in bone marrow may affect prognosis of patients with gynecologic malignancies. Int J Gynecol Cancer 2009; 19: 948-952
- 6 Braun S, Vogl FD, Naume B et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 2005; 353: 793-802
- 7 Janni W, Vogl FD, Wiedswang G et al. Persistence of disseminated tumor cells in the bone marrow of breast cancer patients predicts increased risk for relapse – a European pooled analysis. Clin Cancer Res 2011; 17: 2967-2976
- 8 Cristofanilli M, Budd GT, Ellis MJ et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 2004; 351: 781-791
- 9 Rack BK, Schindlbeck C, Andergassen U et al. Use of circulating tumor cells (CTC) in peripheral blood of breast cancer patients before and after adjuvant chemotherapy to predict risk for relapse: The SUCCESS trial. ASCO Annual Meeting 2010. J Clin Oncol 2010; 28: 15s (Suppl.; Abstr. 1003)
- 10 Janni W, Salmen J. Onkologie. Mammakarzinom: Was bringt die SUCCESS-Studie Neues?. Geburtsh Frauenheilk 2010; 70: 330-331
- 11 Liedtke C, Wolf MK, Kiesel L. New concepts for targeted systemic therapy in breast cancer. Geburtsh Frauenheilk 2010; 70: 625-633
- 12 Fehm T, Hoffmann O, Aktas B et al. Detection and characterization of circulating tumor cells in blood of primary breast cancer patients by RT-PCR and comparison to status of bone marrow disseminated cells. Breast Cancer Res 2009; 11: R59
- 13 Fehm T, Solomayer EF, Meng S et al. Methods for isolating circulating epithelial cells and criteria for their classification as carcinoma cells. Cytotherapy 2005; 7: 171-185
- 14 Cristofanilli M, Hayes DF, Budd GT et al. Circulating tumor cells: a novel prognostic factor for newly diagnosed metastatic breast cancer. J Clin Oncol 2005; 23: 1420-1430
- 15 Demel U, Tilz GP, Foeldes-Papp Z et al. Detection of tumour cells in the peripheral blood of patients with breast cancer. Development of a new sensitive and specific immunomolecular assay. J Exp Clin Cancer Res 2004; 23: 465-468
- 16 Lankiewicz S, Rivero BG, Bocher O. Quantitative real-time RT-PCR of disseminated tumor cells in combination with immunomagnetic cell enrichment. Mol Biotechnol 2006; 34: 15-27
- 17 Pierga JY, Bonneton C, Vincent-Salomon A et al. Clinical significance of immunocytochemical detection of tumor cells using digital microscopy in peripheral blood and bone marrow of breast cancer patients. Clin Cancer Res 2004; 10: 1392-1400
- 18 Schoenfeld A, Kruger KH, Gomm J et al. The detection of micrometastases in the peripheral blood and bone marrow of patients with breast cancer using immunohistochemistry and reverse transcriptase polymerase chain reaction for keratin 19. Eur J Cancer 1997; 33: 854-861
- 19 Ismail MS, Wynendaele W, Aerts JL et al. Detection of micrometastatic disease and monitoring of perioperative tumor cell dissemination in primary operable breast cancer patients using real-time quantitative reverse transcription-PCR. Clin Cancer Res 2004; 10: 196-201
- 20 Muller V, Stahmann N, Riethdorf S et al. Circulating tumor cells in breast cancer: correlation to bone marrow micrometastases, heterogeneous response to systemic therapy and low proliferative activity. Clin Cancer Res 2005; 11: 3678-3685
- 21 Stathopoulou A, Mavroudis D, Perraki M et al. Molecular detection of cancer cells in the peripheral blood of patients with breast cancer: comparison of CK-19, CEA and maspin as detection markers. Anticancer Res 2003; 23: 1883-1890
- 22 Banys M, Krawczyk N, Becker S et al. The influence of removal of primary tumor on incidence and phenotype of circulating tumor cells in primary breast cancer. Breast Cancer Res Treat 2011; in press
- 23 Meng S, Tripathy D, Frenkel EP et al. Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res 2004; 10: 8152-8162
- 24 Giuliano M, Giordano A, Jackson S et al. Circulating tumor cells as prognostic and predictive markers in metastatic breast cancer patients receiving first-line systemic treatment. Breast Cancer Res 2011; 13: R67
- 25 Dawood S, Broglio K, Valero V et al. Circulating tumor cells in metastatic breast cancer: from prognostic stratification to modification of the staging system?. Cancer 2008; 113: 2422-2430
- 26 Hayes DF, Cristofanilli M, Budd GT et al. Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res 2006; 12: 4218-4224
- 27 Budd GT, Cristofanilli M, Ellis MJ et al. Circulating tumor cells versus imaging – predicting overall survival in metastatic breast cancer. Clin Cancer Res 2006; 12: 6403-6409
- 28 Nieto Y, Franklin WA, Jones RB et al. Prognostic significance of occult tumor cells in the apheresis products of patients with advanced breast cancer receiving high-dose chemotherapy and autologous hematopoietic progenitor cell support. Biol Blood Marrow Transplant 2004; 10: 415-425
- 29 Bidard FC, Vincent-Salomon A, Sigal-Zafrani B et al. Prognosis of women with stage IV breast cancer depends on detection of circulating tumor cells rather than disseminated tumor cells. Ann Oncol 2008; 19: 496-500
- 30 Nole F, Munzone E, Zorzino L et al. Variation of circulating tumor cell levels during treatment of metastatic breast cancer: prognostic and therapeutic implications. Ann Oncol 2008; 19: 891-897
- 31 Rack B, Schindlbeck C, Andergassen U et al. Prognostic relevance of circulating tumor cells in the peripheral blood of primary breast cancer patients. 33rd Annual San Antonio Breast Cancer Symposium 2010: S6-5
- 32 Bidard FC, Mathiot C, Delaloge S et al. Single circulating tumor cell detection and overall survival in nonmetastatic breast cancer. Ann Oncol 2010; 21: 729-733
- 33 Daskalaki A, Agelaki S, Perraki M et al. Detection of cytokeratin-19 mRNA-positive cells in the peripheral blood and bone marrow of patients with operable breast cancer. Br J Cancer 2009; 101: 589-597
- 34 Pierga JY, Bidard FC, Mathiot C et al. Circulating tumor cell detection predicts early metastatic relapse after neoadjuvant chemotherapy in large operable and locally advanced breast cancer in a phase II randomized trial. Clin Cancer Res 2008; 14: 7004-7010
- 35 Xenidis N, Perraki M, Kafousi M et al. Predictive and prognostic value of peripheral blood cytokeratin-19 mRNA-positive cells detected by real-time polymerase chain reaction in node-negative breast cancer patients. J Clin Oncol 2006; 24: 3756-3762
- 36 Ntoulia M, Stathopoulou A, Ignatiadis M et al. Detection of Mammaglobin A-mRNA-positive circulating tumor cells in peripheral blood of patients with operable breast cancer with nested RT-PCR. Clin Biochem 2006; 39: 879-887
- 37 Stathopoulou A, Vlachonikolis I, Mavroudis D et al. Molecular detection of cytokeratin-19-positive cells in the peripheral blood of patients with operable breast cancer: evaluation of their prognostic significance. J Clin Oncol 2002; 20: 3404-3412
- 38 Fehm T, Becker S, Becker-Pergola G et al. Presence of apoptotic and nonapoptotic disseminated tumor cells reflects the response to neoadjuvant systemic therapy in breast cancer. Breast Cancer Res 2006; 8: R60
- 39 Fehm T, Mueller V, Marches R et al. Tumor cell dormancy: implications for the biology and treatment of breast cancer. APMIS 2008; 116: 742-753
- 40 Janni W, Rack B, Schindlbeck C et al. The persistence of isolated tumor cells in bone marrow from patients with breast carcinoma predicts an increased risk for recurrence. Cancer 2005; 103: 884-891
- 41 Riethdorf S, Muller V, Zhang L et al. Detection and HER2 expression of circulating tumor cells: prospective monitoring in breast cancer patients treated in the neoadjuvant GeparQuattro trial. Clin Cancer Res 2010; 16: 2634-2645
- 42 Camara O, Rengsberger M, Egbe A et al. The relevance of circulating epithelial tumor cells (CETC) for therapy monitoring during neoadjuvant (primary systemic) chemotherapy in breast cancer. Ann Oncol 2007; 18: 1484-1492
- 43 Becker S, Solomayer E, Becker-Pergola G et al. Primary systemic therapy does not eradicate disseminated tumor cells in breast cancer patients. Breast Cancer Res Treat 2007; 106: 239-243
- 44 Schmidt-Kittler O, Ragg T, Daskalakis A et al. From latent disseminated cells to overt metastasis: genetic analysis of systemic breast cancer progression. Proc Natl Acad Sci USA 2003; 100: 7737-7742
- 45 Solomayer EF, Becker S, Pergola-Becker G et al. Comparison of HER2 status between primary tumor and disseminated tumor cells in primary breast cancer patients. Breast Cancer Res Treat 2006; 98: 179-184
- 46 Krawczyk N, Banys M, Neubauer H et al. HER2 status on persistent disseminated tumor cells after adjuvant therapy may differ from initial HER2 status on primary tumor. Anticancer Res 2009; 29: 4019-4024
- 47 Fehm T, Krawczyk N, Solomayer EF et al. ERalpha-status of disseminated tumour cells in bone marrow of primary breast cancer patients. Breast Cancer Res 2008; 10: R76
- 48 Pantel K, Schlimok G, Braun S et al. Differential expression of proliferation-associated molecules in individual micrometastatic carcinoma cells. J Natl Cancer Inst 1993; 85: 1419-1424
- 49 Braun S, Kentenich C, Janni W et al. Lack of effect of adjuvant chemotherapy on the elimination of single dormant tumor cells in bone marrow of high-risk breast cancer patients. J Clin Oncol 2000; 18: 80-86
- 50 Rüschoff J, Nagelmeier I, Middel P et al. The role of Her-2/neu in the carcinogenesis of breast cancer – when and where?. Geburtsh Frauenheilk 2009; 69: 711-716
- 51 Meng S, Tripathy D, Shete S et al. HER-2 gene amplification can be acquired as breast cancer progresses. Proc Natl Acad Sci USA 2004; 101: 9393-9398
- 52 Jückstock J, Rack B, Schindlbeck C et al. Treatment with trastuzumab in recurrence free patients with early breast cancer and persistent disseminated tumor cells (DTC) in bone marrow. in San Antonio Breast Cancer Symposium 2008 San Antonio, Texas:
- 53 Rack B, Juckstock J, Gunthner-Biller M et al. Trastuzumab clears HER2/neu-positive isolated tumor cells from bone marrow in primary breast cancer patients. Arch Gynecol Obstet 2011; in press
- 54 Bozionellou V, Mavroudis D, Perraki M et al. Trastuzumab administration can effectively target chemotherapy-resistant cytokeratin-19 messenger RNA-positive tumor cells in the peripheral blood and bone marrow of patients with breast cancer. Clin Cancer Res 2004; 10: 8185-8194
- 55 Aktas B, Muller V, Tewes M et al. Comparison of estrogen and progesterone receptor status of circulating tumor cells and the primary tumor in metastatic breast cancer patients. Gynecol Oncol 2011; 122: 356-360
- 56 Broom RJ, Tang PA, Simmons C et al. Changes in estrogen receptor, progesterone receptor and Her-2/neu status with time: discordance rates between primary and metastatic breast cancer. Anticancer Res 2009; 29: 1557-1562
- 57 Noss D, Buchholz S, Ortmann O. Adjuvant endocrine therapy for breast cancer during perimenopause. Geburtsh Frauenheilk 2010; 70: 112-116
- 58 Karrison TG, Ferguson DJ, Meier P. Dormancy of mammary carcinoma after mastectomy. J Natl Cancer Inst 1999; 91: 80-85
- 59 Gluz O, Liedtke C, Nitz U et al. Molecular mechanisms of chemoresistance and potential means of overcoming it. Geburtsh Frauenheilk 2009; 69: 138-144
- 60 Diel I, Dresemann G, Fehm T et al. Interdisciplinary consensus on the use of adjuvant bisphosphonate therapy in breast cancer patients. Geburtsh Frauenheilk 2009; 69: 511-516
- 61 Weiss L. Metastatic inefficiency. Adv Cancer Res 1990; 54: 159-211
- 62 Rajab TK, Neubauer H, Krämer B et al. Die Metastasierungskaskade – Neue Wege der Metastasierung. Geburtsh Frauenheilk 2009; 69: 69-70
- 63 Aktas B, Tewes M, Fehm T et al. Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res 2009; 11: R46
- 64 Setoguchi T, Taga T, Kondo T. Cancer stem cells persist in many cancer cell lines. Cell Cycle 2004; 3: 414-415
- 65 Szotek PP, Pieretti-Vanmarcke R, Masiakos PT et al. Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc Natl Acad Sci USA 2006; 103: 11154-11159
- 66 Balic M, Lin H, Young L et al. Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 2006; 12: 5615-5621
- 67 Achuthan S, Santhoshkumar TR, Prabhakar J et al. Drug induced senescence generates chemoresistant stem like cells with low reactive oxygen species. J Biol Chem 2011; 286: 37813-37829