Der Nuklearmediziner 2011; 34(02): 108-113
DOI: 10.1055/s-0031-1280786
Hybridbildgebung und Strahlentherapie – aktuelle Entwicklungen
Georg Thieme Verlag KG Stuttgart · New York

MR/PET-Hybridbildgebung: Prinzip, Probleme und Potenzial für die Strahlentherapie

Hybrid MR/PET Imaging: Principle, Problems and Potential for Radiotherapy
M. K. Werner
1   Diagnostische und Interventionelle Radiologie, Universitätsklinikum der Eberhard-Karls-Universität, Tübingen
2   Nuklearmedizin, Universitätsklinikum der Eberhard-Karls-Universität, Tübingen
,
N. F. Schwenzer
1   Diagnostische und Interventionelle Radiologie, Universitätsklinikum der Eberhard-Karls-Universität, Tübingen
,
D. Thorwarth
3   Sektion Biomedizinische Physik, Radioonkologie, Universitätsklinikum der Eberhard-Karls-Universität, Tübingen
› Author Affiliations
Further Information

Publication History

Publication Date:
03 August 2011 (online)

Zusammenfassung

Die MR/PET-Hybridbildgebung ermöglicht die Kombination der hochsensitiven molekularen PET-Bildgebung mit morphologisch hochaufgelöster MR-Bildgebung und liefert zusätzliche, ergänzende funktionelle MR-Informationen (Kontrastmittelverhalten, Diffusionseigenschaften, Spektroskopie) für die Definition des Zielvolumens in der Bestrahlungsplanung. Aufgrund der geringeren Belastung des Patienten durch die kombinierte Untersuchung und der reduzierten Strahlendosis bietet sich die MR/PET an für Verlaufsuntersuchungen, und kann so eine frühzeitige Intervention (Dosiseskalation, Therapieanpassung) bei Nichtansprechen ermöglichen. Schwierigkeiten bestehen weiterhin bei der Lungendiagnostik und in einer aufwendigen Schwächungskorrektur.

Abstract

MR/PET hybrid imaging combines highly sensitive metabolic PET imaging and high-resolution MRI. Additional functional MR data can be acquired (dynamic contrast enhancement, diffusion properties, MR spectroscopy) and used for target volume definition in radiotherapy. Because of the reduced stress for the patient avoiding multiple examinations and the reduction in radiation dose, MR/PET appears to be well suited for follow-up examinations and therapy monitoring rendering early changes in the therapy regimen (e. g., dose escalation) for non-responders possible. However, pulmonary imaging and attenuation correction remain challenging.

 
  • Literatur

  • 1 Astner ST, Dobrei-Ciuchendea M, Essler M et al. Effect of 11C-methionine-positron emission tomography on gross tumor volume delineation in stereotactic radiotherapy of skull base meningiomas. Int J Radiat Oncol Biol Phys 2008; 72: 1161-1167
  • 2 Beer AJ, Eiber M, Souvatzoglou M et al. Radionuclide and hybrid imaging of recurrent prostate cancer. Lancet Oncol 2011; 12: 181-91
  • 3 Delso G, Ziegler S. PET/MRI system design. Eur J Nucl Med Mol Imaging 2009; 36 (Suppl. 01) S86-S92
  • 4 Dirix P, Vandecaveye V, De Kreyzer F et al. Dose painting in radiotherapy for head and neck squamous cell carcinoma: value of repeated functional imaging with (18)F-FDG PET, (18)F-fluoromisonidazole PET, diffusion weighted MRI, and dynamic contrast-enhanced MRI. J Nucl Med 2009; 50: 1020-1027
  • 5 Du J, Carl M, Bydder M et al. Qualitative and quantitative ultrashort echo time (UTE) imaging of cortical bone. J Magn Reson 2010; 207: 304-311
  • 6 Etchebehere EC, Romanato JS, Santos AO et al. Impact of [F-18] FDG-PET/CT in the restaging and management of patients with malignant melanoma. Nucl Med Commun 2010; 31: 925-930
  • 7 Facey K, Bradbury I, Laking G et al. Overview of the clinical effectiveness of positron emission tomography imaging in selected cancers. Health Technol Assess. 2007; 11: iii-iv xi–267
  • 8 Fuchs VR, Sox Jr HC. Physicians′ views of the relative importance of thirty medical innovations. Health Aff (Millwood) 2001; 20: 30-42
  • 9 Gehler B, Paulsen F, Oksüz MO et al. [68Ga]-DOTATOC-PET/CT for meningioma IMRT treatment planning. Radiat Oncol 2009; 4: 56
  • 10 Heesakkers RA, Hövels AM, Jager GJ et al. MRI with a lymph-node-specific contrast agent as an alternative to CT scan and lymph-node dissection in patients with prostate cancer: a prospective multicohort study. Lancet Oncol 2008; 9: 850-856
  • 11 Heusner T, Gölitz P, Hamami M et al. “One-stop-shop” staging: Should we prefer FDG-PET/CT or MRI for the detection of bone metastases?. Eur J Radiol 2009; Nov 26 [Epub ahead of print]
  • 12 Hicks RJ, Rischin D, Fisher R et al. Utility of FMISO PET in advanced head and neck cancer treated with chemoradiation incorporating a hypoxia-targeting chemotherapy agent. Eur J Nucl Med Mol Imaging 2005; 32: 1384-1391
  • 13 Hofmann M, Pichler B, Schölkopf B et al. Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques. Eur J Nucl Med Mol Imaging 2009; 36 (Suppl. 01) S93-S104
  • 14 Jansen JF, Schöder H, Lee NY et al. Noninvasive assessment of tumor microenvironment using dynamic contrast-enhanced magnetic resonance imaging and 18 F-fluoromisonidazole positron emission tomography imaging in neck nodal metastases. Int J Radiat Oncol Biol Phys 2010; 77: 1403-1410
  • 15 Judenhofer MS, Wehrl HF, Newport DF et al. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 2008; 14: 459-465
  • 16 Lambrecht M, Deroose C, Roels S et al. The use of FDG-PET/CT and diffusion weighted magnetic resonance imaging for response prediction before, during and after preoperative chemoradiotherapy for rectal cancer. Acta Oncol 2010; 49 (07) 956-963
  • 17 Paldino MJ, Barboriak DP. Fundamentals of quantitative dynamic contrast-enhanced MR imaging. Magn Reson Imaging Clin N Am 2009; 17: 277-289
  • 18 Pfannenberg C, Königsrainer I, Aschoff P et al. (18)F-FDG-PET/CT to select patients with peritoneal carcinomatosis for cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Ann Surg Oncol 2009; 16: 1295-1303
  • 19 Pfannenberg C, Aschoff P, Schanz S et al. Prospective comparison of 18 F-fluorodeoxyglucose positron emission tomography/computed tomography and whole-body magnetic resonance imaging in staging of advanced malignant melanoma. Eur J Cancer 2007; 43: 557-564
  • 20 Pichler BJ, Kolb A, Nägele T et al. PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med 2010; 51: 333-336
  • 21 Rowland IJ, Peterson ET, Gordon JW et al. Hyperpolarized 13carbon MR. Curr Pharm Biotechnol. 2010; 11 (06) 709-719
  • 22 Satoh Y, Ichikawa T, Motosugi U et al. Diagnosis of peritoneal dissemination: comparison of 18F-FDG PET/CT, diffusion-weighted MRI, and contrast-enhanced MDCT. AJR Am J Roentgenol 2011; 196: 447-453
  • 23 Scheenen TW, Fütterer J, Weiland E et al. Discriminating cancer from noncancer tissue in the prostate by 3-dimensional proton magnetic resonance spectroscopic imaging: a prospective multicenter validation study. Invest Radiol 2011; 46: 25-33
  • 24 Schlemmer H-P, Pichler BJ, Schmand M et al. Simultaneous MR/PET Imaging of the Human Brain: Feasibility Study. Radiology 2008; 248: 1028-1035
  • 25 Sieren JC, Ohno Y, Koyama H et al. Recent technological and application developments in computed tomography and magnetic resonance imaging for improved pulmonary nodule detection and lung cancer staging. J Magn Reson Imaging 2010; 32: 1353-1369
  • 26 Søvik A, Malinen E, Olsen DR. Strategies for biologic image-guided dose escalation: a review. Int J Radiat Oncol Biol Phys 2009; 73: 650-658
  • 27 Thoeny HC, Ross BD. Predicting and monitoring cancer treatment response with diffusion-weighted MRI. J Magn Reson Imaging 2010; 32: 2-16
  • 28 Thorwarth D, Henke G, Müller AC et al. Simultaneous (68)Ga-DOTATOC-PET/MRI for IMRT Treatment Planning for Meningioma: First Experience. Int J Radiat Oncol Biol Phys 2011; [Epub ahead of print]
  • 29 Thorwarth D, Alber M. Implementation of hypoxia imaging into treatment planning and delivery. Radiother Oncol 2010; 97: 172-175
  • 30 Thorwarth D, Geets X, Paiusco M. Physical radiotherapy treatment planning based on functional PET/CT data. Radiother Oncol 2010; 96: 317-324