Subscribe to RSS
DOI: 10.1055/s-0031-1283761
Prothetische Materialien in der Bauchwandchirurgie – ein Überblick
Meshes in Abdominal Wall Surgery – An OverviewPublication History
Publication Date:
19 October 2011 (online)
Zusammenfassung
Die Bauchwand- und Hernienchirurgie ist ohne die prothetische Verwendung von Netzimplantaten heute nicht mehr vorstellbar. Imposant ist die Vielzahl der dabei verwendeten Fabrikate. Die Arbeit gibt unter Zusammenfassung der relevanten Materialgruppen einen Überblick über derzeit verwendete Materialien, beschreibt die Eigenschaften und weist auf relevante Unterschiede hin.
Abstract
Abdominal wall surgery and hernia repair is nowadays not conceivable without the use of mesh prosthetics. There are countless products from various health-care companies available. This article gives an overview of meshes currently in use, describes their characteristics and indicates the relevant differences between the various groups of implants.
-
Literatur
- 1 Lammers BJ, Meyer HJ, Huber HG et al. Entwicklungen bei der Leistenhernie vor dem Hintergrund neu eingeführter Eingriffstechniken im Kammerbereich Nordrhein. Chirurg 2001; 72: 448-452
- 2 Barrat C, Seriser F, Arnoud R et al. Inguinal hernia repair with beta glucan-coated mesh: prospective multicenter study – preliminary results. Hernia 2004; 8: 33-38
- 3 deLange DH, Aufenacker TJ, Roest M et al. Inguinal hernia surgery in The Netherlands: a baseline study before the introduction of the Dutch Guidelines. Hernia 2005; 9: 172-177
- 4 Richards SK, Earnshaw JJ. Management of primary and recurrent inguinal hernia by surgeons from the South West of England. Ann R Coll Surg Eng 2003; 85: 402-404
- 5 Bay-Nielsen M, Kehlet H, Strand L et al. Danish Hernia Database Collaboration. Quality assessment of 26 304 herniorrhaphies in Denmark: a prospective nationwide study. Lancet 2001; 358: 1124-1128
- 6 Onitsuka A, Katagiri Y, Kiyama S et al. Current practices in adult groin hernias: a survey of Japanese general surgeons. Surg Today 2003; 33: 155-157
- 7 Chiasson PM, Pace DE, Schlachta CM et al. Minimally invasive surgical practice: A survey of general surgeons in Ontario. Can J Surg 2004; 47: 15-19
- 8 Rutkow IM. Demographic and socioeconomic aspects of hernia repair in the United States in 2003. Surg Clin N Am 2003; 83: 1045-1051
- 9 Flum DR, Horvath K, Koepsell T. Have outcomes of incisional hernia repair improved with time?. A population-based analysis. Ann Surg 2003; 237: 129-135
- 10 Orenstein SB, Qiao Y, Kaur M et al. Human monocyte activation by biologic and biodegradable meshes in vitro. Surg Endosc 2010; 24: 805-811
- 11 Klinge U, Klink CD, Klosterhalfen B. Das ideale Mesh – mehr als ein Moskitonetz. Zbl Chir 2010; 135: 168-174
- 12 Bringman S, Conze J, Cuccurullo D et al. Hernia repair: the search for ideal meshes. Hernia 2010; 14: 81-87
- 13 Weyhe D, Schmitz I, Belyaev O et al. Experimental comparison of monofile light and heavy polypropylene meshes: less weight does not mean less biological response. World J Surg 2006; 30: 1586-1591
- 14 McDermott MK, Isayeva IS, Thomas TM et al. Characterization of the structure and properties of authentic and counterfeit polypropylene surgical meshes. Hernia 2006; 10: 131-142
- 15 Cobb SW, Kercher KW, Heniford BT. The argument for lightweight polypropylene mesh in hernia repair. Surg Innov 2005; 12: 63-69
- 16 Rodehaver GT. Surgipro mesh: not all multifilaments are the same. Int Urogynecol J Pelvic Floor Dysfunct 2006; 17 (Suppl. 01) S31-S33
- 17 Schumpelick V, Klinge U, Welty G et al. Meshes in der Bauchwand. Chirurg 1999; 70: 876-887
- 18 Chu CC. Textile-based biomaterials for surgical application. In: Dimitriu S. (Hrsg.). Polymeric biomaterials. 2.. Aufl. Basel: M. Dekker Verlag; 2002: 521-523
- 19 Scheidbach H, Tamme C, Tannapfel A et al. In vivo studies comparing the biocompatibility of various polypropylene meshes and their handling properties during totally extraperitoneal endoscopic patchplasty: an experimental study in pigs. Surg Endosc 2004; 18: 211-220
- 20 Earle DB, Romanelli J. Prosthetic materials for hernia: what’s new?. Contemp Surg 2007; 63: 63-69
- 21 Klosterhalfen B, Junge K, Klinge U. The lightweight and large porous mesh concept for hernia repair. Expert Rev Med Devices 2005; 2: 103-117
- 22 Robinson TN, Clarke JH, Schoen J et al. Major mesh-related complications following hernia repair. Surg Endosc 2005; 19: 1556-1560
- 23 Mühl T, Binnebösel M, Klinge U et al. New objective measurement to characterize the porosity of textile implants. J Biomed Mater Res Part B Appl Biomater 2008; 84: 176-183
- 24 Klinge U, Klosterhalfen B, Birkenhauer V et al. Impact of polymer pore size on the interface scar formation in a rat model. J Surg Res 2002; 103: 208-214
- 25 Novitsky YW, Harrell AG, Hope WW et al. Meshes in hernia repair. Surg Technol Int 2007; 16: 123-127
- 26 Conze J, Krones CJ, Schumpelick V et al. Incisional hernia: challenge of reoperations after mesh repair. Langenbecks Arch Surg 2007; 392: 453-457
- 27 Jonas J. Das Problem der Netzschrumpfung in der laparoskopischen Hernienchirurgie. Zbl Chir 2009; 134: 209-213
- 28 Amid PK. Classification of biomaterials and their related complications in abdominal wall hernia surgery. Hernia 1997; 1: 15-21
- 29 Gilbert TW, Freund J, Badylak SF. Quantification of DNA in biologic scaffold materials. J Surg Res 2009; 152: 135-139
- 30 Aufenacker TJ, Koelemay MJ, Gouma DJ et al. Sytematic review and meta-analysis of the effectiveness of antibiotic prophylaxis in prevention of wound infection after mesh repair of abdominal wall hernia. Br J Surg 2006; 93: 5-10
- 31 Engelsman AF, van der Mei HC, Busscher HJ et al. Morphological aspects of surgical meshes as a risk factor for bacterial colonization. Br J Surg 2008; 95: 1051-1059
- 32 Klinge U, Junge K, Spellerberg B et al. Do multifilament alloplastic meshes increase the infection rate?. Analysis of the polymeric surface, the bacteria adherence, and the in vivo consequences in a rat model. J Biomed Mater Res 2002; 63: 765-771
- 33 Saadia R. Invited Commentary on the Analysis of Infection after Polypropylene Mesh Repair of Abdominal Wall Hernia. World J Surg 2006; 30: 2279-2280
- 34 Aydinuraz K, Agalar C, Agalar F et al. In vitro S. epidermidis and S. aureus adherence to composite and lightweight polypropylene grafts. J Surg Res 2009; 157: 79-86
- 35 Engelsman AF, van der Mei HC, Ploeg RJ et al. The phenomenon of infection with abdominal wall reconstruction. Biomaterials 2007; 28: 2314-2327
- 36 Dayton MT, Buchele BA, Shirazi SS et al. Use of an absorbable mesh to repair contaminated abdominal wall defects. Arch Surg 1986; 121: 954-960
- 37 Trabucchi E, Corsi F, Meinardi C et al. Tissue response for polyester mesh for hernia repair: an ultra-microscopic study in man. Hernia 1998; 2: 107-112
- 38 Pason BL, Novitsky YW, Zercy M et al. Management of infections of polytetrafluoroethylene-based mesh. Surg Infect 2007; 8: 337-341
- 39 Schug-Pass C, Sommerer F, Tannapfel A et al. The use of composite meshes in laparoscopic repair of abdominal wall hernias: are there differences in biocompatibility?. Surg Endosc 2009; 23: 487-495
- 40 Badylak SF. The extracellular matrix as a biologic scaffold material. Biomaterials 2007; 28: 3587-3593
- 41 Ansaloni L, Catena F, Coccolini F et al. New “biological” meshes: the need for a register. The EHS Registry for biological prostheses: call for participating European surgeons. Hernia 2009; 13: 103-108
- 42 Harth KC, Rosen MJ. Major complications associated with xenograft biologic mesh implantation in abdominal wall reconstruction. Surg Innov 2009; 16: 324-329
- 43 Gaertner WB, Bonsack ME, Delayne JP. Experimental evaluation of four biologic prostheses for ventral hernia repair. J Gastrointest Surg 2007; 11: 1275-1285
- 44 Cavallaro A, LoMenzo E, DiVita M et al. Use of biological meshes for abdominal wall reconstruction in highly contaminated fields. World J Gastroenterol 2010; 16: 1928-1935
- 45 Ayubi FS, Armstrong PJ, Mattai MS et al. Abdominal wall hernia repair: a comparison of Permacol and Surgisis grafts in a rat hernia model. Hernia 2008; 12: 373-378
- 46 Cook JL, Fox DB, Kuroki K et al. In vitro and in vivo comparison of five biomaterials used for orthopaedic soft tissue augmentation. Am J Vet Res 2008; 69: 148-156
- 47 Liang HC. Effects of crosslinking degree of an acellular biological tissue on its tissue regeneration pattern. Biomaterials 2004; 25: 3541-3552
- 48 Petter-Puchner AH, Fortelny RH, Walder N et al. Adverse effects associated with the use of porcine cross-linked collagen implants in an experimental model of incisional hernia repair. J Surg Res 2008; 145: 105-110
- 49 Pomahac B, Aflaki P. Use of non-cross-linked porcine dermal scaffold in abdominal wall reconstruction. Am J Surg 2010; 199: 22-27
- 50 Rosen MJ. Biologic mesh for abdominal wall reconstruction: a critical appraisal. Am Surg 2010; 76: 1-6
- 51 Bartkowski R. G-DRG 2010: Chirurgisch relevante Änderungen des deutschen Fallpauschalensystems. BDC Mitteilungen 2010; 1: 23-27