Subscribe to RSS
DOI: 10.1055/s-0031-1286282
Therapeutic Plasma Concentrations of Antidepressants and Antipsychotics: Lessons from PET Imaging
Publication History
received 10 February 2011
revised 29 March 2011
accepted 13 May 2011
Publication Date:
28 September 2011 (online)
Abstract
Therapeutic Drug Monitoring (TDM) of psychotropic drugs is strongly depending on the validity of recommended therapeutic plasma concentration reference ranges. Rational pharmacotherapy is based on the assumption that plasma concentrations are directly related to target occupancy by the respective drug. Here we show that positron emission tomography (PET) of molecular drug targets in the brain (neuroreceptors and transporters) allows for establishment of these relationships, thereby providing guidance for TDM services. Associations between brain target occupancy, plasma concentrations, and clinical effects and adverse reactions will be discussed for the most commonly used antidepressant and antipsychotic drugs.
-
References
- 1 Alderman J, Wolkow R, Fogel IM. Drug concentration monitoring with tolerability and efficacy assessments during open-label, long-term sertraline treatment of children and adolescents. J Child Adolesc Psychopharmacol 2006; 16: 117-129
- 2 Argyelán M, Szabó Z, Kanyó B et al. Dopamine transporter availability in medication free and in bupropion treated depression: a 99mTc-TRODAT-1 SPECT study. J Affect Disord 2005; 89: 115-123
- 3 Baron JC, Martinot JL, Cambon H et al. Striatal dopamine receptor occupancy during and following withdrawal from neuroleptic treatment: correlative evaluation by positron emission tomography and plasma prolactin levels. Psychopharmacology (Berl) 1989; 99: 463-472
- 4 Baumann P, Hiemke C, Ulrich S et al. Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie. The AGNP-TDM expert group consensus guidelines: therapeutic drug monitoring in psychiatry. Pharmacopsychiatry 2004; 37: 243-265
- 5 Bench CJ, Lammertsma AA, Dolan RJ et al. Dose dependent occupancy of central dopamine D2 receptors by the novel neuroleptic CP-88,059-01: a study using positron emission tomography and 11C-raclopride. Psychopharmacology Berl 1993; 112: 308-314
- 6 Bench CJ, Lammertsma AA, Grasby PM et al. The time course of binding to striatal dopamine D2 receptors by the neuroleptic ziprasidone (CP-88,059-01) determined by positron emission tomography. Psychopharmacology (Berl) 1996; 124: 141-147
- 7 Bowie CR, Reichenberg A, Patterson TL et al. Determinants of real-world functional performance in schizophrenia subjects: correlations with cognition, functional capacity, and symptoms. Am J Psychiatry 2006; 163: 418-425
- 8 Bressan RA, Erlandsson K, Jones HM et al. Is regionally selective D2/D3 dopamine occupancy sufficient for atypical antipsychotic effect? an in vivo quantitative [123I]epidepride SPET study of amisulpride-treated patients. Am J Psychiatry 2003; 160: 1413-1420
- 9 Chouinard G, Jones B, Remington G et al. A Canadian multicenter placebo-controlled study of fixed doses of risperidone and haloperidol in the treatment of chronic schizophrenic patients. J Clin Psychopharmacol 1993; 13: 25-40
- 10 Daniel DG, Zimbroff DL, Potkin SG et al. Ziprasidone 80 mg/day and 160 mg/day in the acute exacerbation of schizophrenia and schizoaffective disorder: a 6-week placebo-controlled trial. Ziprasidone Study Group. Neuropsychopharmacol 1999; 20: 491-505
- 11 Farde L, Nordström AL, Wiesel FA et al. Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch Gen Psychiatry 1992; 49: 538-544
- 12 Farde L, Wiesel FA, Halldin C et al. Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Arch Gen Psychiatry 1988; 45: 71-76
- 13 Fischman AJ, Bonab AA, Babich JW et al. Positron emission tomographic analysis of central 5-hydroxytryptamine2 receptor occupancy in healthy volunteers treated with the novel antipsychotic agent, ziprasidone. J Pharmacol Exp Ther 1996; 279: 939-947
- 14 Fitzgerald PB, Kapur S, Remington G et al. Predicting haloperidol occupancy of central dopamine D2 receptors from plasma levels. Psychopharmacology (Berl) 2000; 149: 1-5
- 15 Gallezot JD, Weinzimmer D, Nabulsi N et al. Evaluation of [(11)C]MRB for assessment of occupancy of norepinephrine transporters: Studies with atomoxetine in non-human primates. Neuroimage 2010; Sep 29. [Epub ahead of print]
- 16 Gefvert O, Bergström M, Långström B et al. Time course of central nervous dopamine-D2 and 5-HT2 receptor blockade and plasma drug concentrations after discontinuation of quetiapine (Seroquel) in patients with schizophrenia. Psychopharmacology (Berl) 1998; 135: 119-126
- 17 Gefvert O, Lundberg T, Wieselgren IM et al. D (2) and 5HT(2A) receptor occupancy of different doses of quetiapine in schizophrenia: a PET study. Eur Neuropsychopharmacol 2001; 11: 105-110
- 18 Ginovart N, Wilson AA, Hussey D et al. D2-receptor upregulation is dependent upon temporal course of D2-occupancy: a longitudinal [11C]-raclopride PET study in cats. Neuropsychopharmacol 2009; 34: 662-671
- 19 Goff DC. New insights into clinical response in schizophrenia: from dopamine D2 receptor occupancy to patients’ quality of life. Am J Psychiatry 2008; 165: 940-943
- 20 Gründer G, Carlsson A, Wong DF. Mechanism of new antipsychotic medications: occupancy is not just antagonism. Arch Gen Psychiatry 2003; 60: 974-977
- 21 Gründer G, Fellows C, Janouschek H et al. Brain and plasma pharmacokinetics of aripiprazole in patients with schizophrenia: an [18F]fallypride PET study. Am J Psychiatry 2008; 9165: 988-995
- 22 Gründer G, Landvogt C, Vernaleken I et al. The striatal and extrastriatal D2/D3 receptor-binding profile of clozapine in patients with schizophrenia. Neuropsychopharmacol 2006; 31: 1027-1035
- 23 Hagberg G, Gefvert O, Bergström M et al. N-[11C]methylspiperone PET, in contrast to [11C]raclopride, fails to detect D2 receptor occupancy by an atypical neuroleptic. Psychiatry Res 1998; 82: 147-160
- 24 Hiemke C, Baumann P, Bergemann N et al. The TDM group of the AGNP. AGNP Consensus Guidelines for Therapeutic Drug Monitoring in Psychiatry. Update 2011. Pharmacopsychiatry 2011; 44: 195-235
- 25 Jensen NH, Rodriguiz RM, Caron MG et al. N-desalkylquetiapine a potent norepinephrine reuptake inhibitor and partial 5-HT1A agonist, as a putative mediator of quetiapine’s antidepressant activity. Neuropsychopharmacol 2008; 33: 2303-2312
- 26 Kapur S, Remington G, Zipursky RB et al. The D2 dopamine receptor occupancy of risperidone and its relationship to extrapyramidal symptoms: a PET study. Life Sci 1995; 57: PL103-PL107
- 27 Kapur S, Zipursky R, Jones C et al. A positron emission tomography study of quetiapine in schizophrenia: a preliminary finding of an antipsychotic effect with only transiently high dopamine D2 receptor occupancy. Arch Gen Psychiatry 2000; 57: 553-559
- 28 Kapur S, Zipursky RB, Remington G et al. 5-HT2 and D2 receptor occupancy of olanzapine in schizophrenia: a PET investigation. Am J Psychiatry 1998; 155: 921-928
- 29 Kapur S, Zipursky R, Roy P et al. The relationship between D2 receptor occupancy and plasma levels on low dose oral haloperidol: a PET study. Psychopharmacology (Berl) 1997; 131: 148-152
- 30 Keck Jr P, Buffenstein A, Ferguson J et al. Ziprasidone 40 and 120 mg/day in the acute exacerbation of schizophrenia and schizoaffective disorder: a 4-week placebo-controlled trial. Psychopharmacology (Berl) 1998; 140: 173-184
- 31 Keefe RS, Bilder RM, Davis SM et al. CATIE Investigators; Neurocognitive Working Group . Neurocognitive effects of antipsychotic medications in patients with chronic schizophrenia in the CATIE Trial. Arch Gen Psychiatry 2007; 64: 633-647
- 32 Kegeles LS, Slifstein M, Frankle WG et al. Dose-occupancy study of striatal and extrastriatal dopamine D2 receptors by aripiprazole in schizophrenia with PET and [18F]fallypride. Neuropsychopharmacol 2008; 33: 3111-3125
- 33 Kessler RM, Ansari MS, Riccardi P et al. Occupancy of striatal and extrastriatal dopamine D2 receptors by clozapine and quetiapine. Neuropsychopharmacol 2006; 31: 1991-2001
- 34 Learned-Coughlin SM, Bergström M, Savitcheva I et al. In vivo activity of bupropion at the human dopamine transporter as measured by positron emission tomography. Biol Psychiatry 2003; 54: 800-805
- 35 Logan J, Wang GJ, Telang F et al. Imaging the norepinephrine transporter in humans with (S,S)-[11C]O-methyl reboxetine and PET: problems and progress. Nucl Med Biol 2007; 34: 667-679
- 36 Lundberg J, Christophersen JS, Petersen KB et al. PET measurement of serotonin transporter occupancy: a comparison of escitalopram and citalopram. Int J Neuropsychopharmacol 2007; 10: 777-785
- 37 Mamo D, Kapur S, Keshavan M et al. D2 receptor occupancy of olanzapine pamoate depot using positron emission tomography: an open-label study in patients with schizophrenia. Neuropsychopharmacol 2008; 33: 298-304
- 38 Mamo D, Kapur S, Shammi CM et al. A PET study of dopamine D2 and serotonin 5-HT2 receptor occupancy in patients with schizophrenia treated with therapeutic doses of ziprasidone. Am J Psychiatry 2004; 161: 818-825
- 39 Mamo DC, Uchida H, Vitcu I et al. Quetiapine extended-release versus immediate-release formulation: a positron emission tomography study. J Clin Psychiatry 2008; 69: 81-86
- 40 Martinot JL, Paillere-Martinot ML, Poirier MF et al. In vivo characteristics of dopamine D2 receptor occupancy by amisulpride in schizophrenia. Psychopharmacology Berl 1996; 124: 154-158
- 41 Medori R, Mannaert E, Gründer G. Plasma antipsychotic concentration and receptor occupancy, with special focus on risperidone long-acting injectable. Eur Neuropsychopharmacol 2006; 16: 233-240
- 42 Meisenzahl EM, Schmitt G, Gründer G et al. Striatal D2/D3 receptor occupancy, clinical response and side effects with amisulpride: an iodine-123-iodobenzamide SPET study. Pharmacopsychiatry 2008; 41: 169-175
- 43 Meyer JH, Goulding VS, Wilson AA et al. Bupropion occupancy of the dopamine transporter is low during clinical treatment. Psychopharmacology (Berl) 2002; 163: 102-105
- 44 Meyer JH, Wilson AA, Sagrati S et al. Serotonin transporter occupancy of five selective serotonin reuptake inhibitors at different doses: an [11C]DASB positron emission tomography study. Am J Psychiatry 2004; 161: 826-835
- 45 Newman-Tancredi A. The importance of 5-HT1A receptor agonism in antipsychotic drug action: rationale and perspectives. Curr Opin Investig Drugs 2010; 11: 802-812
- 46 Nordström AL, Farde L, Halldin C. Time course of D2-dopamine receptor occupancy examined by PET after single oral doses of haloperidol. Psychopharmacology (Berl) 1992; 106: 433-438
- 47 Nordström AL, Farde L, Wiesel FA et al. Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects: a double-blind PET study of schizophrenic patients. Biol Psychiatry 1993; 33: 227-235
- 48 Nyberg S, Eriksson B, Oxenstierna G et al. Suggested minimal effective dose of risperidone based on PET-measured D2 and 5-HT2A receptor occupancy in schizophrenic patients. Am J Psychiatry 1999; 156: 869-875
- 49 Nyberg S, Farde L, Eriksson L et al. 5-HT2 and D2 dopamine receptor occupancy in the living human brain. A PET study with risperidone. Psychopharmacology 1993; 110: 265-272
- 50 Nyberg S, Farde L, Halldin CA. A PET study of 5-HT2 and D2 dopamine receptor occupancy induced by olanzapine in healthy subjects. Neuropsychopharmacol 1997; 16: 1-7
- 51 Nyberg S, Farde L, Halldin C et al. D2 dopamine receptor occupancy during low-dose treatment with haloperidol decanoate. Am J Psychiatry 1995; 152: 173-178
- 52 Pilowsky LS, Mulligan RS, Acton PD et al. Limbic selectivity of clozapine. Lancet 1997; 350: 490-491
- 53 Reis M, Aamo T, Spigset O et al. Serum concentrations of antidepressant drugs in a naturalistic setting: compilation based on a large therapeutic drug monitoring database. Ther Drug Monit 2009; 31: 42-56
- 54 Remington G, Mamo D, Labelle A et al. A PET study evaluating dopamine D2 receptor occupancy for long-acting injectable risperidone. Am J Psychiatry 2006; 163: 396-401
- 55 Schooler N, Rabinowitz J, Davidson M et al. Early Psychosis Global Working Group . Risperidone and haloperidol in first-episode psychosis: a long-term randomized trial. Am J Psychiatry 2005; 162: 947-953
- 56 Seeman P, Lee T, Chau-Wong M et al. Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 1976; 261: 717-719
- 57 Shams ME, Arneth B, Hiemke C et al. CYP2D6 polymorphism and clinical effect of the antidepressant venlafaxine. J Clin Pharm Ther 2006; 31: 493-502
- 58 Suhara T, Takano A, Sudo Y et al. High levels of serotonin transporter occupancy with low-dose clomipramine in comparative occupancy study with fluvoxamine using positron emission tomography. Arch Gen Psychiatry 2003; 60: 386-391
- 59 Suzuki Y, Fukui N, Sawamura K et al. Concentration-response relationship for fluvoxamine using remission as an endpoint: a receiver operating characteristics curve analysis in major depression. J Clin Psychopharmacol 2008; 28: 325-328
- 60 Takano A, Gulyás B, Varrone A et al. Saturated norepinephrine transporter occupancy by atomoxetine relevant to clinical doses: a rhesus monkey study with (S,S)-[(18)F]FMeNER-D (2). Eur J Nucl Med Mol Imaging 2009; 36: 1308-1314
- 61 Takano A, Suhara T, Kusumi I et al. Time course of dopamine D2 receptor occupancy by clozapine with medium and high plasma concentrations. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30: 75-81
- 62 Takano A, Suzuki K, Kosaka J et al. A dose-finding study of duloxetine based on serotonin transporter occupancy. Psychopharmacology (Berl) 2006; 185: 395-399
- 63 Uchida H, Mamo DC, Kapur S et al. Monthly administration of long-acting injectable risperidone and striatal dopamine D2 receptor occupancy for the management of schizophrenia. J Clin Psychiatry 2008; 69: 1281-1286
- 64 Ulrich S, Neuhof S, Braun V et al. Therapeutic window of serum haloperidol concentration in acute schizophrenia and schizoaffective disorder. Pharmacopsychiatry 1998; Sep; 31 (05) 163-169
- 65 Vernaleken I, Fellows C, Janouschek H et al. Striatal and extrastriatal D2/D3-receptor-binding properties of ziprasidone: a positron emission tomography study with [18F]Fallypride and [11C]raclopride (D2/D3-receptor occupancy of ziprasidone). J Clin Psychopharmacol 2008; 28: 608-617
- 66 Vernaleken I, Janouschek H, Raptis M et al. Dopamine D2/3 receptor occupancy by quetiapine in striatal and extrastriatal areas. Int J Neuropsychopharmacol 2010; 13: 951-960
- 67 Vernaleken I, Siessmeier T, Buchholz HG et al. High striatal occupancy of D2-like dopamine receptors by amisulpride in the brain of patients with schizophrenia. Int J Neuropsychopharmacol 2004; 7: 421-430
- 68 Voineskos AN, Wilson AA, Boovariwala A et al. Serotonin transporter occupancy of high-dose selective serotonin reuptake inhibitors during major depressive disorder measured with [11C]DASB positron emission tomography. Psychopharmacology (Berl) 2007; 193: 539-545
- 69 Wolkin A, Barouche F, Wolf AP et al. Dopamine blockade and clinical response: evidence for two biological subgroups of schizophrenia. Am J Psychiatry 1989; 146: 905-908
- 70 Wong DF, Tauscher J, Gründer G. The role of imaging in proof of concept for CNS drug discovery and development. Neuropsychopharmacol 2009; 34: 187-203
- 71 Xiberas X, Martinot JL, Mallet L et al. In vivo extrastriatal and striatal D2 dopamine receptor blockade by amisulpride in schizophrenia. J Clin Psychopharmacol 2001; 21: 207-214
- 72 Yokoi F, Gründer G, Biziere K et al. Dopamine D2 and D3 receptor occupancy in normal humans treated with the antipsychotic drug aripiprazole (OPC 14597): a study using positron emission tomography and [11C]raclopride. Neuropsychopharmacol 2002; 27: 248-259