Klin Padiatr 2011; 223(06): 320-325
DOI: 10.1055/s-0031-1287826
Review
© Georg Thieme Verlag KG Stuttgart · New York

Hematopoietic Stem Cell Transplantation for Severe Combined Immunodeficiency

Hämatopoetische Stammzelltransplantation bei Schwerem Kombiniertem Immundefekt
M. Hönig
1   Pediatrics and Adolescent Medicine, University Medical Center Ulm, Germany
,
A. Schulz
1   Pediatrics and Adolescent Medicine, University Medical Center Ulm, Germany
,
W. Friedrich
1   Pediatrics and Adolescent Medicine, University Medical Center Ulm, Germany
› Author Affiliations
Further Information

Publication History

Publication Date:
03 November 2011 (online)

Abstract

Severe combined immunodeficiency (SCID) is a heterogeneous group of congenital diseases characterized by their presentation with life threatening infections in the first months of life. The clinical presentation and the therapeutic outcome is influenced by multiple factors: the genetic defect, infectious complications, the presence of maternal T cells the development of Omenn syndrome, as well as non-immunological signs and symptoms of the disease. Hematopoietic stem cell transplantation (HSCT) to date is the only established curative option and allows long-term cure of the disease. Therapeutic objectives of HSCT in SCID clearly differ from those in malignant or hematological disease. Disease specific aspects and their influence on the therapeutic strategy in SCID will be discussed in this review.

Zusammenfassung

Der Begriff des Schweren Kombinierten Immundefektes (SCID) bezeichnet eine heterogene Gruppe angeborener Erkrankungen, die durchlebensbedrohliche Infektionen mit Beginn in den ersten Lebensmonaten gekennzeichnet sind. Die klinischen Manifestationen und die therapeutischen Ergebnisse werden durch eine Vielzahl sehr unterschiedlicher Faktoren be­einflusst: den genetischen Defekt, infektiöse Komplikationen, die Übertragung maternaler T-Zellen, die Ausbildung eines Omenn-Syndroms sowie nicht-immunologische Manifestationen der Erkrankung. Die Hämatopoetische Stamm­zelltransplantation (HSCT) ist die momentan einzige etablierte Therapie und ermöglicht eine dauerhafte Heilung der Erkrankung. Die therapeutischen Ziele der HSCT bei SCID unterscheiden sich deutlich von denen in der Behandlung hämatologischer oder malig­ner Erkrankungen. Krankheitsspezifische Aspekte und deren Einfluss auf die Therapie schwerer kombinierter Immundefekte werden in diesem Übersichtsartikel diskutiert.

 
  • References

  • 1 Arredondo-Vega FX, Santisteban I, Daniels S et al. Adenosine deaminase deficiency: genotype-phenotype correlations based on expressed activity of 29 mutant alleles. Am J Hum Genet 1998; 63: 1049-1059
  • 2 Buckley RH. The multiple causes of human SCID. J Clin Invest 2004; 114: 1409-1411
  • 3 De Ravin SS, Cowen EW, Zarember KA et al. Hypomorphic Rag mutations can cause destructive midline granulomatous disease. Blood 2010; 116: 1263-1271
  • 4 de Villartay JP. V(D)J recombination deficiencies. Adv Exp Med Biol 2009; 650: 46-58
  • 5 Dvorak CC, Cowan MJ. Radiosensitive severe combined immunodeficiency disease. Immunol Allergy Clin North Am 2010; 30: 125-142
  • 6 Felgentreff K, Perez-Becker R, Speckmann C et al. Clinical and immunological manifestations of patients with atypical severe combined immunodeficiency. Clin Immunol 2011; [Epub ahead of print].
  • 7 Fischer A. Human primary immunodeficiency diseases. Immunity 2007; 27: 835-845
  • 8 Friedrich W, Goldmann SF, Vetter U et al. Immunoreconstitution in severe combined immunodeficiency after transplantation of HLA-haploidentical, T-cell-depleted bone marrow. Lancet 1984; 1: 761-764
  • 9 Friedrich W, Honig M, Schulz A et al. Immune reconstitution in congenital disorders after HLA-haploidentical hemopoietic stem cell transplantation. Blood Cells Mol Dis 2004; 33: 291-293
  • 10 Gatti RA, Meuwissen HJ, Allen HD et al. Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet 1968; 2: 1366-1369
  • 11 Gennery AR, Slatter MA, Grandin L et al. Transplantation of hematopoietic stem cells and long-term survival for primary immunodeficiencies in Europe: entering a new century, do we do better?. J Allergy Clin Immunol 2010; 126: 602-610 e601–e611
  • 12 Gennery AR, Slatter MA, Rice J et al. Mutations in CHD7 in patients with CHARGE syndrome cause T-B+natural killer cell+severe combined immune deficiency and may cause Omenn-like syndrome. Clin Exp Immunol 2008; 153: 75-80
  • 13 Goldschmidt MH, Kennedy JS, Kennedy DR et al. Severe papillomavirus infection progressing to metastatic squamous cell carcinoma in bone marrow-transplanted X-linked SCID dogs. J Virol 2006; 80: 6621-6628
  • 14 Grunebaum E, Mazzolari E, Porta F et al. Bone marrow transplantation for severe combined immune deficiency. Jama 2006; 295: 508-518
  • 15 Hershfield MS. Genotype is an important determinant of phenotype in adenosine deaminase deficiency. Curr Opin Immunol 2003; 15: 571-577
  • 16 Honig M, Albert MH, Schulz A et al. Patients with adenosine deaminase deficiency surviving after hematopoietic stem cell transplantation are at high risk of CNS complications. Blood 2007; 109: 3595-3602
  • 17 Honig M, Schwarz K. Omenn syndrome: a lack of tolerance on the background of deficient lymphocyte development and maturation. Curr Opin Rheumatol 2006; 18: 383-388
  • 18 Laffort C, Le Deist F, Favre M et al. Severe cutaneous papillomavirus disease after haemopoietic stem-cell transplantation in patients with severe combined immune deficiency caused by common gammac cytokine receptor subunit or JAK-3 deficiency. Lancet 2004; 363: 2051-2054
  • 19 Liston A, Enders A, Siggs OM. Unravelling the association of partial T-cell immunodeficiency and immune dysregulation. Nat Rev Immunol 2008; 8: 545-558
  • 20 Muller SM, Ege M, Pottharst A et al. Transplacentally acquired maternal T lymphocytes in severe combined immunodeficiency: a study of 121 patients. Blood 2001; 98: 1847-1851
  • 21 Muller SM, Kohn T, Schulz AS et al. Similar pattern of thymic-dependent T-cell reconstitution in infants with severe combined immunodeficiency after human leukocyte antigen (HLA)-identical and HLA-nonidentical stem cell transplantation. Blood 2000; 96: 4344-4349
  • 22 Neven B, Leroy S, Decaluwe H et al. Long-term outcome after hemato­poietic stem cell transplantation of a single-center cohort of 90 patients with severe combined immunodeficiency. Blood 2009; 113: 4114-4124
  • 23 Nijagal A, Wegorzewska M, Jarvis E et al. Maternal T cells limit engraftment after in utero hematopoietic cell transplantation in mice. J Clin Invest 2011; 121: 582-592
  • 24 Notarangelo LD, Fischer A, Geha RS et al. Primary immunodeficiencies: 2009 update. J Allergy Clin Immunol. 2009 124. 1161-1178
  • 25 Pannicke U, Honig M, Hess I et al. Reticular dysgenesis (aleukocytosis) is caused by mutations in the gene encoding mitochondrial adenylate kinase 2. Nat Genet 2009; 41: 101-105
  • 26 Reisner Y, Kapoor N, Kirkpatrick D et al. Transplantation for severe combined immunodeficiency with HLA-A,B,D,DR incompatible parental marrow cells fractionated by soybean agglutinin and sheep red blood cells. Blood 1983; 61: 341-348
  • 27 Schuetz C, Niehues T, Friedrich W et al. Autoimmunity, autoinflammation and lymphoma in combined immunodeficiency (CID). Autoimmun Rev 2010; 9: 477-482
  • 28 Villa A, Notarangelo LD, Roifman CM. Omenn syndrome: inflammation in leaky severe combined immunodeficiency. J Allergy Clin Immunol 2008; 122: 1082-1086
  • 29 Williams KM, Gress RE. Immune reconstitution and implications for immunotherapy following haematopoietic stem cell transplantation. Best Pract Res Clin Haematol 2008; 21: 579-596