Subscribe to RSS
DOI: 10.1055/s-0031-1290131
Dual Activation in Organocatalysis: Design of Tunable and Bifunctional Organocatalysts and Their Applications in Enantioselective Reactions
Publication History
Publication Date:
19 January 2012 (online)
Abstract
Dual activation has been identified as an important concept in the field of asymmetric catalysis, especially asymmetric organocatalysis. A comprehensive account of the design of novel amino hydrogen-bonding organocatalysts and their successful applications in two classic carbon-carbon bond forming reactions, namely the asymmetric aldol and Michael reactions, is given. This account also covers work that uses known organocatalysts in the preparation of other important chiral molecules using the asymmetric Michael reaction as the key transformation by virtue of a dual activation strategy.
1 Introduction
2 General Concept of Dual Activation
3 Dual Activation in Asymmetric Aldol Reactions
3.1 Design and Preparation of Tunable Aminoamide Organocatalysts
3.2 Application in the Asymmetric Aldol Reaction of Cyclic Ketones with Aldehydes
3.3 Application in the Asymmetric Aldol Reaction of Acetone with Isatins
3.4 Application in the Asymmetric Aldol Reaction of Acetone with Aldehydes
4 Dual Activation in Asymmetric Michael Reactions
4.1 Design and Preparation of Tunable Aminothiourea, Aminosalicylamide, and Aminosulfamide Organocatalysts
4.2 Application in the Asymmetric Michael Reaction of Cyclic Ketones and Nitroolefins
4.3 Application in the Asymmetric Michael Reaction of Bulky Aldehydes and Nitroolefins
4.4 Other Asymmetric Michael Reactions Based on a Dual Activation Strategy
5 Conclusion
Key words
asymmetric organocatalysis - dual activation - tunable organocatalysts - aldol reactions - Michael additions
-
1a
Jacobsen EN.Pfaltz A.Yamamoto H. Comprehensive Asymmetric Catalysis Vol. I-III: Springer; Berlin: 1999. -
1b
Lin G.-Q.Li Y.-M.Chan ASC. Principles and Applications of Asymmetric Synthesis John Wiley & Sons; New York: 2001. -
1c
Beller M.Bolm C. Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals 2nd ed., Vol. 1-2: Wiley-VCH; Weinheim: 2004. - For selected reviews on asymmetric organocatalysis, see:
-
2a
Dalko PI.Moisan L. Angew. Chem. Int. Ed. 2004, 43: 5138 -
2b
Acc. Chem. Res.
2004,
37:
487-631
-
2c
Berkessel A.Gröger H. Asymmetric Organocatalysis Wiley-VCH; Weinheim: 2005. -
2d
Dalko PI. Enantioselective Organocatalysis: Reactions and Experimental Procedures Wiley-VCH; Weinheim: 2007. -
2e
Reetz MT.List B.Jaroch S.Weinmann H. Organocatalysis Springer; Berlin: 2008. -
2f
Chem. Rev.
2007,
107:
5413-5883
-
3a
List B.Lerner RA.Barbas CF. J. Am. Chem. Soc. 2000, 122: 2395 -
3b
Ahrendt KA.Borths CJ.MacMillan DWC. J. Am. Chem. Soc. 2000, 122: 4243 - 4 For a review on enamine catalysis,
see:
Mukherjee S.Yang JW.Hoffmann S.List B. Chem. Rev. 2007, 107: 5471 - For reviews on H-bonding catalysis, see:
-
5a
Doyle AG.Jacobsen EN. Chem. Rev. 2007, 107: 5713 -
5b
Yu X.-H.Wang W. Chem. Asian J. 2008, 3: 516 -
5c
Pihko PM. Hydrogen Bonding in Organic Synthesis Wiley-VCH; Weinheim: 2009. - For selected reviews on dual activation in metal catalysis, see:
-
6a
Ma J.-A.Cahard D. Angew. Chem. Int. Ed. 2004, 43: 4566 -
6b
Yamamoto H.Futatsugi K. Angew. Chem. Int. Ed. 2005, 44: 1924 -
6c
Kanai M.Kato N.Ichikawa E.Shibasaki M. Synlett 2005, 1491 -
6d
Shibasaki M.Matsunaga M.Kumagai N. Synlett 2008, 1583 -
6e
Shibasaki M.Kanai M.Matsunaga S.Kumagai N. Acc. Chem. Res. 2009, 42: 1117 - For two reviews on dual activation in organocatalysis, see:
-
7a
Liu X.Lin L.Feng X. Chem. Commun. (Cambridge) 2009, 6145 -
7b
Bhadury PS.Song B.-A.Yang S.Hu D.-Y.Xue W. Curr. Org. Synth. 2009, 6: 380 - 8 For a review on dual activation combining
organocatalysis and Lewis acid catalysis, see:
Paull DH.Abraham CJ.Scerba MT.Alden-Danforth E.Lectka T. Acc. Chem. Res. 2008, 41: 655 - For selected reviews on aldol reactions, see:
-
9a
Mahrwald R. Modern Aldol Reactions Wiley-VCH; Weinheim: 2004. -
9b
Brodmann T.Lorenz M.Schäckel R.Simsek S.Kalesse M. Synlett 2009, 174 -
10a
Sakthievel K.Notz W.Bui T.Barbas CF. , -
10b
Notz W.List B. J. Am. Chem. Soc. 2000, 122: 7386 - For selected reviews, see:
-
11a
Alcaide B.Almendros P. Angew. Chem. Int. Ed. 2003, 42: 858 -
11b
List B. Acc. Chem. Res. 2004, 37: 548 -
11c
Notz W.Tanaka F.Barbas CF. Acc. Chem. Res. 2004, 37: 580 -
11d
Seayad J.List B. Org. Biomol. Chem. 2005, 3: 719 -
12a
Bahmanyar S.Houk KN. J. Am. Chem. Soc. 2001, 123: 12911 -
12b
Hoang L.Bahmanyar S.Houk KN.List B. J. Am. Chem. Soc. 2003, 125: 16 -
12c
Bahmanyar S.Houk KN.Martin HJ.List B. J. Am. Chem. Soc. 2003, 125: 2475 -
13a
Tang Z.Jiang F.Yu L.-T.Cui X.Gong L.-Z.Mi A.-Q.Jiang Y.-Z.Wu Y.-D. J. Am. Chem. Soc. 2003, 125: 5262 -
13b
Tang Z.Jiang F.Cui X.Gong L.-Z.Mi A.-Q.Jiang Y.-Z.Wu Y.-D. Proc. Natl. Acad. Sci. U.S.A. 2004, 101: 5755 -
13c
Tang Z.Yang Z.-H.Chen X.-H.Cun L.-F.Mi A.-Q.Jiang Y.-Z.Gong L.-Z. J. Am. Chem. Soc. 2005, 127: 9285 -
14a
Chen J.-R.Lu H.-H.Li X.-Y.Cheng L.Wan J.Xiao W.-J. Org. Lett. 2005, 7: 4543 -
14b
Chen J.-R.Li X.-Y.Xing X.-N.Xiao W.-J. J. Org. Chem. 2006, 71: 8198 - For selected reviews, see:
-
15a
Kobayashi S.Manabe K. Acc. Chem. Res. 2002, 35: 209 -
15b
Li C.-J. Chem. Rev. 2005, 105: 3095 -
15c
Li C.-J.Liang L. Chem. Soc. Rev. 2006, 35: 68 - For examples of organocatalytic direct aldol reactions in water alone or together with organic solvents, see:
-
16a
Mase N.Nakai Y.Ohara N.Yoda H.Takabe K.Tanaka F.Barbas CF. J. Am. Chem. Soc. 2006, 128: 734 -
16b
Hayashi Y.Sumiya T.Takahashi J.Gotoh H.Urushima T.Shoji M. Angew. Chem. Int. Ed. 2006, 45: 958 -
16c
Hayashi Y.Aratake S.Okano T.Takahashi J.Sumiya T.Shoji M. Angew. Chem. Int. Ed. 2006, 45: 5527 -
16d
Dziedzic P.Zou W.Hafren J.Córdova A. Org. Biomol. Chem. 2006, 4: 38 -
16e
Wu Y.Zhang Y.Yu M.Zhao G.Wang S. Org. Lett. 2006, 8: 4417 - 17
Huang W.-P.Chen J.-R.Li X.-Y.Cao Y.-J.Xiao W.-J. Can. J. Chem. 2007, 85: 208 - For representative examples of the metal-catalyzed asymmetric preparation of 3-alkyl-3-hydroxyindolin-2-ones, see:
-
18a
Funabashi K.Jachmann M.Kanai M.Shibasaki M. Angew. Chem. Int. Ed. 2003, 42: 5489 -
18b
Toullec PY.Jagt RBC.de Vries JG.Feringa BL.Minnaard AJ. Org. Lett. 2006, 8: 2715 -
18c
Shintani R.Inoue M.Hayashi T. Angew. Chem. Int. Ed. 2006, 45: 3353 - For asymmetric organocatalytic aldol reactions of isatins and acetone giving moderate ee values, see:
-
19a
Luppi G.Cozzi PG.Monari M.Kaptein B.Broxterman QB.Tomasini C. J. Org. Chem. 2005, 70: 7418 -
19b
Luppi G.Monari M.Corrêa RJ.Violante FA.Pinto AC.Kaptein B.Broxterman AB.Garden SJ.Tomasini C. Tetrahedron 2006, 62: 12017 -
19c
Chen G.Wang Y.He H.-P.Gao S.Yang X.-S.Hao X.-J. Heterocycles 2006, 68: 2327 - 20
Chen J.-R.Liu X.-P.Zhu X.-Y.Li L.Qiao Y.-F.Zhang J.-M.Xiao W.-J. Tetrahedron 2007, 63: 10437 - For examples of the enantioselective organocatalyzed synthesis of convolutamydine A, see:
-
21a
Kamano Y.Zhang H.-P.Ichihara Y.Kizu H.Komiyama K.Pettit GR. Tetrahedron Lett. 1995, 36: 2783 -
21b
Malkov AV.Kabeshov MA.Bella M.Kysilka O.Malyshev DA.Pluháccková K.Kocovsk P. Org. Lett. 2007, 9: 5473 - 22
Chen J.-R.An X.-L.Zhu X.-Y.Wang X.-F.Xiao W.-J. J. Org. Chem. 2008, 73: 6006 - For recent reviews on Michael reactions, see:
-
23a
Tsogoeva SB. Eur. J. Org. Chem. 2007, 1701 -
23b
Almasi D.Alonso DA.Nájera C. Tetrahedron: Asymmetry 2007, 18: 299 - For selected reviews on the asymmetric Michael addition of nitroolefins, see:
-
24a
Berner OM.Tedeschi L.Enders D. Eur. J. Org. Chem. 2002, 1877 -
24b
Sulzer-Mossé S.Alexakis A. Chem. Commun. (Cambridge) 2007, 3123 - 25 For a review on the nitro group,
see:
Ono N. The Nitro Group in Organic Synthesis Wiley-VCH; New York: 2004. -
26a
Cao Y.-J.Lu H.-H.Lai Y.-Y.Lu L.-Q.Xiao W.-J. Synthesis 2006, 3795 -
26b
Cao Y.-J.Lai Y.-Y.Wang X.Li Y.-J.Xiao W.-J. Tetrahedron Lett. 2007, 48: 21 -
26c
Chen J.-R.Lai Y.-Y.Lu H.-H.Wang X.-F.Xiao W.-J. Tetrahedron 2009, 65: 9238 -
26d
Chen J.-R.Cao Y.-J.Zou Y.-Q.Tan F.Fu L.Zhu X.-Y.Xiao W.-J. Org. Biomol. Chem. 2010, 8: 1275 -
26e
Chen J.-R.Fu L.Zou Y.-Q.Chang N.-J.Rong J.Xiao W.-J. Org. Biomol. Chem. 2011, 9: 5280 - 27 For a review on chiral quaternary
carbon synthesis, see:
Trost BM.Jiang C. Synthesis 2006, 369 - For organocatalytic Michael reactions between α,α-disubstituted aldehydes and nitroolefins for the construction of all-carbon quaternary stereogenic centers, see:
-
28a
Lalonde MP.Chen Y.Jacobsen EN. Angew. Chem. Int. Ed. 2006, 45: 6366 -
28b
McCooey SH.Connon SJ. Org. Lett. 2007, 9: 599 - For two related reviews on primary amine catalysis, see:
-
29a
Ishihara K.Sakakura A.Hatano M. Synlett 2007, 686 -
29b
Chen Y.-C. Synlett 2008, 1919 - 30
Chen J.-R.Zou Y.-Q.Fu L.Ren F.Tan F.Xiao W.-J. Tetrahedron 2010, 66: 5367 - For two selected reviews on the cinchona alkaloids and their derivatives as bifunctional organocatalysts, see:
-
31a
Marcelli T.van Maarseveen JH.Hiemstra H. Angew. Chem. Int. Ed. 2006, 45: 7496 -
31b
Song CE. Cinchona Alkaloids in Synthesis and Catalysis Wiley-VCH; Weinheim: 2009. -
32a
Lu H.-H.Zhang F.-G.Meng X.-G.Duan S.-W.Xiao W.-J. Org. Lett. 2009, 11: 3946 -
32b
Zhang F.-G.Yang Q.-Q.Xuan J.Lu H.-H.Duan S.-W.Chen J.-R.Xiao W.-J. Org. Lett. 2010, 12: 5636 - 33
Lu H.-H.Wang X.-F.Yao C.-J.Zhang J.-M.Wu H.Xiao W.-J. Chem. Commun. (Cambridge) 2009, 4251 - 34
Duan S.-W.An J.Chen J.-R.Xiao W.-J. Org. Lett. 2011, 13: 2290