Synlett 2012(4): 490-508  
DOI: 10.1055/s-0031-1290131
ACCOUNT
© Georg Thieme Verlag Stuttgart ˙ New York

Dual Activation in Organocatalysis: Design of Tunable and Bifunctional Organocatalysts and Their Applications in Enantioselective Reactions

Liang-Qiu Lu, Xiao-Lei An, Jia-Rong Chen, Wen-Jing Xiao*
Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, P. R. of China
Fax: +86(27)67862041; e-Mail: wxiao@mail.ccnu.edu.cn;
Further Information

Publication History

Received 30 July 2011
Publication Date:
19 January 2012 (online)

Abstract

Dual activation has been identified as an important concept in the field of asymmetric catalysis, especially asymmetric organocatalysis. A comprehensive account of the design of novel amino hydrogen-bonding organocatalysts and their successful applications in two classic carbon-carbon bond forming reactions, namely the asymmetric aldol and Michael reactions, is given. This account also covers work that uses known organocatalysts in the preparation of other important chiral molecules using the asymmetric Michael reaction as the key transformation by virtue of a dual activation strategy.

1 Introduction

2 General Concept of Dual Activation

3 Dual Activation in Asymmetric Aldol Reactions

3.1 Design and Preparation of Tunable Aminoamide Organocatalysts

3.2 Application in the Asymmetric Aldol Reaction of Cyclic Ketones with Aldehydes

3.3 Application in the Asymmetric Aldol Reaction of Acetone with Isatins

3.4 Application in the Asymmetric Aldol Reaction of Acetone with Aldehydes

4 Dual Activation in Asymmetric Michael Reactions

4.1 Design and Preparation of Tunable Aminothiourea, Aminosalicylamide, and Aminosulfamide Organocatalysts

4.2 Application in the Asymmetric Michael Reaction of Cyclic Ketones and Nitroolefins

4.3 Application in the Asymmetric Michael Reaction of Bulky Aldehydes and Nitroolefins

4.4 Other Asymmetric Michael Reactions Based on a Dual ­Activation Strategy

5 Conclusion

    References

  • 1a Jacobsen EN. Pfaltz A. Yamamoto H. Comprehensive Asymmetric Catalysis   Vol. I-III:  Springer; Berlin: 1999. 
  • 1b Lin G.-Q. Li Y.-M. Chan ASC. Principles and Applications of Asymmetric Synthesis   John Wiley & Sons; New York: 2001. 
  • 1c Beller M. Bolm C. Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals   2nd ed., Vol. 1-2:  Wiley-VCH; Weinheim: 2004. 
  • For selected reviews on asymmetric organocatalysis, see:
  • 2a Dalko PI. Moisan L. Angew. Chem. Int. Ed.  2004,  43:  5138 
  • 2b Acc. Chem. Res.  2004,  37:  487-631  
  • 2c Berkessel A. Gröger H. Asymmetric Organocatalysis   Wiley-VCH; Weinheim: 2005. 
  • 2d Dalko PI. Enantioselective Organocatalysis: Reactions and Experimental Procedures   Wiley-VCH; Weinheim: 2007. 
  • 2e Reetz MT. List B. Jaroch S. Weinmann H. Organocatalysis   Springer; Berlin: 2008. 
  • 2f Chem. Rev.  2007,  107:  5413-5883  
  • 3a List B. Lerner RA. Barbas CF. J. Am. Chem. Soc.  2000,  122:  2395 
  • 3b Ahrendt KA. Borths CJ. MacMillan DWC. J. Am. Chem. Soc.  2000,  122:  4243 
  • 4 For a review on enamine catalysis, see: Mukherjee S. Yang JW. Hoffmann S. List B. Chem. Rev.  2007,  107:  5471 
  • For reviews on H-bonding catalysis, see:
  • 5a Doyle AG. Jacobsen EN. Chem. Rev.  2007,  107:  5713 
  • 5b Yu X.-H. Wang W. Chem. Asian J.  2008,  3:  516 
  • 5c Pihko PM. Hydrogen Bonding in Organic Synthesis   Wiley-VCH; Weinheim: 2009. 
  • For selected reviews on dual activation in metal catalysis, see:
  • 6a Ma J.-A. Cahard D. Angew. Chem. Int. Ed.  2004,  43:  4566 
  • 6b Yamamoto H. Futatsugi K. Angew. Chem. Int. Ed.  2005,  44:  1924 
  • 6c Kanai M. Kato N. Ichikawa E. Shibasaki M. Synlett  2005,  1491 
  • 6d Shibasaki M. Matsunaga M. Kumagai N. Synlett  2008,  1583 
  • 6e Shibasaki M. Kanai M. Matsunaga S. Kumagai N. Acc. Chem. Res.  2009,  42:  1117 
  • For two reviews on dual activation in organocatalysis, see:
  • 7a Liu X. Lin L. Feng X. Chem. Commun. (Cambridge)  2009,  6145 
  • 7b Bhadury PS. Song B.-A. Yang S. Hu D.-Y. Xue W. Curr. Org. Synth.  2009,  6:  380 
  • 8 For a review on dual activation combining organocatalysis and Lewis acid catalysis, see: Paull DH. Abraham CJ. Scerba MT. Alden-Danforth E. Lectka T. Acc. Chem. Res.  2008,  41:  655 
  • For selected reviews on aldol reactions, see:
  • 9a Mahrwald R. Modern Aldol Reactions   Wiley-VCH; Weinheim: 2004. 
  • 9b Brodmann T. Lorenz M. Schäckel R. Simsek S. Kalesse M. Synlett  2009,  174 
  • 10a Sakthievel K. Notz W. Bui T. Barbas CF.   , 
  • 10b Notz W. List B. J. Am. Chem. Soc.  2000,  122:  7386 
  • For selected reviews, see:
  • 11a Alcaide B. Almendros P. Angew. Chem. Int. Ed.  2003,  42:  858 
  • 11b List B. Acc. Chem. Res.  2004,  37:  548 
  • 11c Notz W. Tanaka F. Barbas CF. Acc. Chem. Res.  2004,  37:  580 
  • 11d Seayad J. List B. Org. Biomol. Chem.  2005,  3:  719 
  • 12a Bahmanyar S. Houk KN. J. Am. Chem. Soc.  2001,  123:  12911 
  • 12b Hoang L. Bahmanyar S. Houk KN. List B. J. Am. Chem. Soc.  2003,  125:  16 
  • 12c Bahmanyar S. Houk KN. Martin HJ. List B. J. Am. Chem. Soc.  2003,  125:  2475 
  • 13a Tang Z. Jiang F. Yu L.-T. Cui X. Gong L.-Z. Mi A.-Q. Jiang Y.-Z. Wu Y.-D. J. Am. Chem. Soc.  2003,  125:  5262 
  • 13b Tang Z. Jiang F. Cui X. Gong L.-Z. Mi A.-Q. Jiang Y.-Z. Wu Y.-D. Proc. Natl. Acad. Sci. U.S.A.  2004,  101:  5755 
  • 13c Tang Z. Yang Z.-H. Chen X.-H. Cun L.-F. Mi A.-Q. Jiang Y.-Z. Gong L.-Z. J. Am. Chem. Soc.  2005,  127:  9285 
  • 14a Chen J.-R. Lu H.-H. Li X.-Y. Cheng L. Wan J. Xiao W.-J. Org. Lett.  2005,  7:  4543 
  • 14b Chen J.-R. Li X.-Y. Xing X.-N. Xiao W.-J. J. Org. Chem.  2006,  71:  8198 
  • For selected reviews, see:
  • 15a Kobayashi S. Manabe K. Acc. Chem. Res.  2002,  35:  209 
  • 15b Li C.-J. Chem. Rev.  2005,  105:  3095 
  • 15c Li C.-J. Liang L. Chem. Soc. Rev.  2006,  35:  68 
  • For examples of organocatalytic direct aldol reactions in water alone or together with organic solvents, see:
  • 16a Mase N. Nakai Y. Ohara N. Yoda H. Takabe K. Tanaka F. Barbas CF. J. Am. Chem. Soc.  2006,  128:  734 
  • 16b Hayashi Y. Sumiya T. Takahashi J. Gotoh H. Urushima T. Shoji M. Angew. Chem. Int. Ed.  2006,  45:  958 
  • 16c Hayashi Y. Aratake S. Okano T. Takahashi J. Sumiya T. Shoji M. Angew. Chem. Int. Ed.  2006,  45:  5527 
  • 16d Dziedzic P. Zou W. Hafren J. Córdova A. Org. Biomol. Chem.  2006,  4:  38 
  • 16e Wu Y. Zhang Y. Yu M. Zhao G. Wang S. Org. Lett.  2006,  8:  4417 
  • 17 Huang W.-P. Chen J.-R. Li X.-Y. Cao Y.-J. Xiao W.-J. Can. J. Chem.  2007,  85:  208 
  • For representative examples of the metal-catalyzed asymmetric preparation of 3-alkyl-3-hydroxyindolin-2-ones, see:
  • 18a Funabashi K. Jachmann M. Kanai M. Shibasaki M. Angew. Chem. Int. Ed.  2003,  42:  5489 
  • 18b Toullec PY. Jagt RBC. de Vries JG. Feringa BL. Minnaard AJ. Org. Lett.  2006,  8:  2715 
  • 18c Shintani R. Inoue M. Hayashi T. Angew. Chem. Int. Ed.  2006,  45:  3353 
  • For asymmetric organocatalytic aldol reactions of isatins and acetone giving moderate ee values, see:
  • 19a Luppi G. Cozzi PG. Monari M. Kaptein B. Broxterman QB. Tomasini C. J. Org. Chem.  2005,  70:  7418 
  • 19b Luppi G. Monari M. Corrêa RJ. Violante FA. Pinto AC. Kaptein B. Broxterman AB. Garden SJ. Tomasini C. Tetrahedron  2006,  62:  12017 
  • 19c Chen G. Wang Y. He H.-P. Gao S. Yang X.-S. Hao X.-J. Heterocycles  2006,  68:  2327 
  • 20 Chen J.-R. Liu X.-P. Zhu X.-Y. Li L. Qiao Y.-F. Zhang J.-M. Xiao W.-J. Tetrahedron  2007,  63:  10437 
  • For examples of the enantioselective organocatalyzed synthesis of convolutamydine A, see:
  • 21a Kamano Y. Zhang H.-P. Ichihara Y. Kizu H. Komiyama K. Pettit GR. Tetrahedron Lett.  1995,  36:  2783 
  • 21b Malkov AV. Kabeshov MA. Bella M. Kysilka O. Malyshev DA. Pluháccková K. Kocovsk P. Org. Lett.  2007,  9:  5473 
  • 22 Chen J.-R. An X.-L. Zhu X.-Y. Wang X.-F. Xiao W.-J. J. Org. Chem.  2008,  73:  6006 
  • For recent reviews on Michael reactions, see:
  • 23a Tsogoeva SB. Eur. J. Org. Chem.  2007,  1701 
  • 23b Almasi D. Alonso DA. Nájera C. Tetrahedron: Asymmetry  2007,  18:  299 
  • For selected reviews on the asymmetric Michael addition of nitroolefins, see:
  • 24a Berner OM. Tedeschi L. Enders D. Eur. J. Org. Chem.  2002,  1877 
  • 24b Sulzer-Mossé S. Alexakis A. Chem. Commun. (Cambridge)  2007,  3123 
  • 25 For a review on the nitro group, see: Ono N. The Nitro Group in Organic Synthesis   Wiley-VCH; New York: 2004. 
  • 26a Cao Y.-J. Lu H.-H. Lai Y.-Y. Lu L.-Q. Xiao W.-J. Synthesis  2006,  3795 
  • 26b Cao Y.-J. Lai Y.-Y. Wang X. Li Y.-J. Xiao W.-J. Tetrahedron Lett.  2007,  48:  21 
  • 26c Chen J.-R. Lai Y.-Y. Lu H.-H. Wang X.-F. Xiao W.-J. Tetrahedron  2009,  65:  9238 
  • 26d Chen J.-R. Cao Y.-J. Zou Y.-Q. Tan F. Fu L. Zhu X.-Y. Xiao W.-J. Org. Biomol. Chem.  2010,  8:  1275 
  • 26e Chen J.-R. Fu L. Zou Y.-Q. Chang N.-J. Rong J. Xiao W.-J. Org. Biomol. Chem.  2011,  9:  5280 
  • 27 For a review on chiral quaternary carbon synthesis, see: Trost BM. Jiang C. Synthesis  2006,  369 
  • For organocatalytic Michael reactions between α,α-disubstituted aldehydes and nitroolefins for the construction of all-carbon quaternary stereogenic centers, see:
  • 28a Lalonde MP. Chen Y. Jacobsen EN. Angew. Chem. Int. Ed.  2006,  45:  6366 
  • 28b McCooey SH. Connon SJ. Org. Lett.  2007,  9:  599 
  • For two related reviews on primary amine catalysis, see:
  • 29a Ishihara K. Sakakura A. Hatano M. Synlett  2007,  686 
  • 29b Chen Y.-C. Synlett  2008,  1919 
  • 30 Chen J.-R. Zou Y.-Q. Fu L. Ren F. Tan F. Xiao W.-J. Tetrahedron  2010,  66:  5367 
  • For two selected reviews on the cinchona alkaloids and their derivatives as bifunctional organocatalysts, see:
  • 31a Marcelli T. van Maarseveen JH. Hiemstra H. Angew. Chem. Int. Ed.  2006,  45:  7496 
  • 31b Song CE. Cinchona Alkaloids in Synthesis and Catalysis   Wiley-VCH; Weinheim: 2009. 
  • 32a Lu H.-H. Zhang F.-G. Meng X.-G. Duan S.-W. Xiao W.-J. Org. Lett.  2009,  11:  3946 
  • 32b Zhang F.-G. Yang Q.-Q. Xuan J. Lu H.-H. Duan S.-W. Chen J.-R. Xiao W.-J. Org. Lett.  2010,  12:  5636 
  • 33 Lu H.-H. Wang X.-F. Yao C.-J. Zhang J.-M. Wu H. Xiao W.-J. Chem. Commun. (Cambridge)  2009,  4251 
  • 34 Duan S.-W. An J. Chen J.-R. Xiao W.-J. Org. Lett.  2011,  13:  2290