Subscribe to RSS
DOI: 10.1055/s-0031-1290319
Direct Synthesis of α-Amino Amides from N-Alkyl Amines by the Copper-Catalyzed Oxidative Ugi-Type Reaction
Publication History
Publication Date:
25 January 2012 (online)
Abstract
α-Amino amides can be accessed directly form N-alkyl amines by the isocyanide-compatible oxidative copper-peroxide conditions even in the presence of water. Various functional groups are tolerated in the reaction, leading to the synthesis of various α-amino amides in moderate yield. A plausible mechanism is proposed in which an oxidative Ugi-type three-component pathway is supposed to be involved.
Key words
α-amino amide - isocyanide - Ugi reaction - copper catalysis - multicomponent reaction
- Supporting Information for this article is available online:
- Supporting Information
-
1a
Dolle RE. Mol. Diversity 1998, 3: 199 -
1b
Weber L. Curr. Med. Chem. 2002, 9: 2085 -
1c
Hulme C.Gore V. Curr. Med. Chem. 2003, 10: 51 -
1d
Sexton KE.Lee HT.Massa M.Padia J.Patt WC.Liao P.Pontrello JK.Roth BD.Spahr MA.Ramharack R. Bioorg. Med. Chem. 2003, 11: 4827 -
1e
Beguin C.LeTiran A.Stables JP.Voyksnerc RD.Kohn H. Bioorg. Med. Chem. 2004, 12: 3079 -
2a
Iden HS.Lubell WD. J. Comb. Chem. 2008, 10: 691 -
2b
Cuny G.Bois-Choussy M.Zhu JP. J. Am. Chem. Soc. 2004, 126: 14475 -
2c
Erb W.Neuville L.Zhu JP. J. Org. Chem. 2009, 74: 3109 -
3a
Porter JR.Wirschun WG.Kuntz KW.Snapper ML.Hoveyda AH. J. Am. Chem. Soc. 2000, 122: 2657 -
3b
Takamura M.Hamashima Y.Usuda H.Kanai M.Shibasaki M. Angew. Chem. Int. Ed. 2000, 39: 1650 -
3c
Lin YS.Alper H. Angew. Chem. Int. Ed. 2001, 40: 779 -
3d
Wang MX.Lin SJ. J. Org. Chem. 2002, 67: 6542 -
3e
Alcaide B.Almendros P.Aragoncillo C. Chem. Eur. J. 2002, 8: 3646 -
3f
Ntaganda R.Milovic T.Tiburcioz J.Thadani AN. Chem. Commun. 2008, 4052 -
3g
Loser R.Frizler M.Schilling K.Gutschow M. Angew. Chem. Int. Ed. 2008, 47: 4331 -
3h
Noorduin WL.Izumi T.Millemaggi A.Leeman M.Meekers H.Van Enckevort WJP.Kellogg RM.Kaptein B.Vlieg E.Blackmond DG. J. Am. Chem. Soc. 2008, 130: 1158 -
3i
Hirner S.Somfai P. J. Org. Chem. 2009, 74: 7798 -
4a
Domling A.Ugi I. Angew. Chem. Int. Ed. 2000, 39: 3168 -
4b
Dömling A. Chem. Rev. 2006, 106: 17 -
4c
El Kaim L.Grimaud L. Tetrahedron 2009, 65: 2153 -
4d
Lygin AV.Meijere A. Angew. Chem. Int. Ed. 2010, 49: 9094 -
5a
Henriques A.Kan C.Chiaroni A.Riche C.Husson HP. J. Org. Chem. 1982, 47: 803 -
5b
Han-ya Y.Tokuyama H.Fukuyama T. Angew. Chem. Int. Ed. 2011, 50: 4884 - 6
Tanaka Y.Hasui T.Suginome M. Org. Lett. 2007, 9: 4407 -
7a
Li CJ. Acc. Chem. Res. 2009, 42: 335 -
7b
Murahashi S.-I.Komiya N.Terai H. Angew. Chem. Int. Ed. 2005, 44: 6931 -
7c
Rajendra PD.Subbarayappa A. Adv. Synth. Catal. 2011, 353: 1695 -
7d
Nicolaou KC.Mathison CJN.Montagnon T. Angew. Chem. Int. Ed. 2003, 42: 4077 -
7e
Nicolaou KC.Mathison CJN.Montagnon T. J. Am. Chem. Soc. 2004, 126: 5192 -
8a
Ngouansavanh T.Zhu JP. Angew. Chem. Int. Ed. 2007, 46: 5775 -
8b
Jiang GX.Chen J.Huang JS.Che CM. Org. Lett. 2009, 11: 4568 -
9a
Brioche J.Masson G.Zhu JP. Org. Lett. 2010, 12: 1432 -
9b
Feuer H.Rubinstein H.Nielsen AT. J. Org. Chem. 1958, 23: 1107 -
9c
Saegusa T.Kobayashi S.Ito Y. Bull. Chem. Soc. Jpn. 1970, 43: 275 -
10a
Saegusa T.Ito Y.Kobayashi S.Hirota K.Takeda N. Can. J. Chem. 1969, 47: 1217 -
10b
Saegusa T.Ito Y.Kobayashi S.Takeda N.Hirota K. Tetrahedron Lett. 1967, 8: 521 -
10c
Saegusa T.Ito Y.Kobayashi S.Takeda N.Hirota K. Tetrahedron Lett. 1967, 8: 1273 - 11
Ye X.Xie CS.Pan YY.Han LH.Xie T. Org. Lett. 2010, 12: 4240 -
12a
Ley SV.Thomas AW. Angew. Chem. Int. Ed. 2003, 42: 5400 -
12b
Evano G.Blanchard N.Toumi M. Chem. Rev. 2008, 108: 3054 -
13a
Boess E.Sureshkumar D.Sud A.Wirtz C.Fares C.Klussmann M. J. Am. Chem. Soc. 2011, 133: 8106 -
13b
Li Z.Bohle S.Li C.-J. Proc. Natl. Acad. Sci. U.S.A. 2006, 103: 8928 -
13c
Ghobrial M.Schnurch M.Mihovilovic MD. J. Org. Chem. 2011, 76: 8781
References and Notes
Representative
Procedure for the Three-Component Reaction
Into an
oven-dried flask, N,N-dimethylaniline
(1a, 242 mg, 2.0 mmol), 1-(isocyanomethylsulfonyl)-4-methylbenzene (2a, 195 mg, 1.0 mmol), CuCl (10 mg, 0.1
mmol), Ph3P (26 mg, 0.1 mmol), and TBHP (70% aq,
2.4 mmol) were added at r.t.. Under the protection of N2,
MeCN (5 mL) was added, and the reaction mixture was allowed to react
at 80 ˚C for 6 h. After the end of the reaction,
the mixture was filtered through a pad of Celite, and the filtrate
was concentrated until the solvent was completely removed. The residue
was then separated on a silica gel column, and the final product was
obtained as a yellow powder (190 mg, 57%). ¹H
NMR (400 MHz, CDCl3, TMS): δ = 7.72
(d, J = 8.8
Hz, 2 H), 7.29-7.35 (m, 3 H), 7.27 (m, 1 H), 6.89 (t, J = 7.4 Hz,
1 H), 6.68 (d, J = 7.6
Hz, 2 H), 4.69 (d, J = 7.2
Hz, 2 H), 3.75 (s, 2 H), 2.99 (s, 3 H), 2.46 (s, 3 H). ¹³C
NMR (100 MHz, CDCl3): δ = 170.4, 149.0,
145.6, 133.7, 130.0, 129.5, 128.9, 119.3, 113.4, 59.8, 58.6, 40.1,
21.8. HRMS (EI): m/z calcd for
C17H20N2O3S [M]+:
332.1195; found: 332.1186.