References and Notes
<A NAME="RD683ST-1A">1a</A>
Roberts JC.
Chem. Rev.
1961,
38:
591
<A NAME="RD683ST-1B">1b</A>
Gales L.
Damas AM.
Curr. Med. Chem.
2005,
12:
2499
<A NAME="RD683ST-2">2</A>
Park HH.
Park Y.-D.
Han J.-M.
Im K.-R.
Lee BW.
Jeong IY.
Jeong T.-S.
Lee WS.
Bioorg. Med. Chem. Lett.
2006,
16:
5580
<A NAME="RD683ST-3A">3a</A>
Shadid KA.
Shaari K.
Abas F.
Israf DA.
Hamzah AS.
Syakroni N.
Saha K.
Lajis NH.
Phytochemistry
2007,
68:
2537
<A NAME="RD683ST-3B">3b</A>
Ee GCL.
Daud S.
Izzaddin SA.
Rahmani M.
J.
Asian Nat. Prod. Res.
2008,
10:
475
<A NAME="RD683ST-4">4</A>
Suvarnakuta P.
Chaweerungrat C.
Devahastin S.
Food Chem.
2011,
125:
240
<A NAME="RD683ST-5A">5a</A>
Goyal S.
Parthasarathy MR.
Indian
J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.
1992,
31:
391
<A NAME="RD683ST-5B">5b</A>
Lokshin V.
Heynderickx A.
Samat A.
Pèpe G.
Guglielmetti R.
Tetrahedron
Lett.
1999,
40:
6761
<A NAME="RD683ST-5C">5c</A>
Clarke DS.
Gabbutt CD.
Hepworth JD.
Heron BM.
Tetrahedron Lett.
2005,
46:
5515
<A NAME="RD683ST-5D">5d</A>
Brito CM.
Pinto DCGA.
Silva AMS.
Silva AMG.
Tomé AC.
Cavaleiro JAS.
Eur.
J. Org. Chem.
2006,
2558
<A NAME="RD683ST-5E">5e</A>
Xu W.-Z.
Huang Z.-T.
Zheng Q.-T.
J.
Org. Chem.
2008,
73:
5606
<A NAME="RD683ST-6">6</A>
Sonawane SA.
Chavan VP.
Shingare MS.
Karale
BK.
Indian
J. Heterocycl. Chem.
2002,
12:
65
<A NAME="RD683ST-7">7</A>
Liu Y.
Ma L.
Chen W.-H.
Wang B.
Xu Z.-L.
Bioorg. Med. Chem.
2007,
15:
2810
<A NAME="RD683ST-8">8</A>
Sittisombut C.
Boutefnouchet S.
Van-Dufat HT.
Tian W.
Michel S.
Koch M.
Tillequin F.
Pfeiffer B.
Pierré A.
Chem.
Pharm. Bull.
2006,
54:
1113
<A NAME="RD683ST-9A">9a</A>
Silva VLM.
Silva AMS.
Pinto DCGA.
Cavaleiro JAS.
Vasas A.
Patonay T.
Monatsh.
Chem.
2008,
139:
1307
<A NAME="RD683ST-9B">9b</A>
Patonay T.
Vasas A.
Kiss-Szikszai A.
Silva AMS.
Cavaleiro JAS.
Austr. J. Chem.
2010,
63:
1592 ; and references cited therein
<A NAME="RD683ST-10">10</A>
Sandulache A.
Silva AMS.
Cavaleiro JAS.
Tetrahedron
2002,
58:
105
<A NAME="RD683ST-11A">11a</A>
Heck RF.
Nolley JP.
J.
Org. Chem.
1972,
37:
2330
<A NAME="RD683ST-11B">11b</A>
Beletskaya IP.
Cheprakov AV.
Chem.
Rev.
2000,
100:
3009
<A NAME="RD683ST-12A">12a</A>
Santos CMM.
Silva AMS.
Cavaleiro JAS.
Synlett
2007,
3113
<A NAME="RD683ST-12B">12b</A>
Santos CMM.
Silva AMS.
Cavaleiro JAS.
Eur.
J. Org. Chem.
2009,
2642
<A NAME="RD683ST-13">13</A>
Hoffmann N.
Chem.
Rev.
2008,
108:
1052
<A NAME="RD683ST-14">14</A>
Optimised procedure
for the synthesis of 3-bromo-flavones 2a-f: Phenyltrimethylammonium tribromide (0.94 g,
2.45 mmol) was added to an anhydrous THF (30 mL) solution of the
appropriate 3-aryl-1-(2-hydroxyphenyl)-propan-1,3-dione 1a-f (1.63
mmol). The reaction mixture was stirred at room temperature for
24-48 h. After that period, the reaction mixture
was poured into a mixture of ice (10 g) and water (30 mL), stirred
for 30 min, and extracted with chloroform (3 × 20
mL). The combined extracts were dried over sodium sulfate and evaporated
to dryness. The obtained residue was purified by TLC (CH2Cl2-light petroleum,
9:1). After solvent evaporation, the obtained residue was recrystallised
from ethanol giving 3-bromoflavones 2a-f [2a:
196 mg (40%); 2b: 226 mg (44%); 2c: 343 mg (45%); 2d:
230 mg (42%); 2e: 237 mg (42%); 2f: 188 mg (32%)]
<A NAME="RD683ST-15">15</A>
3-Bromo-4-methylflavone(2b):
Yellow solid; mp 146-148 ˚C. ¹H
NMR (300.13 MHz, CDCl3): δ = 2.47 (s,
3 H, 4′-CH3), 7.34 (d, J = 8.2 Hz,
2 H, H-3′,5′), 7.44 (br dd, J = 7.1, 8.3 Hz,
1 H, H-6), 7.51 (br d, J = 8.3 Hz,
1 H, H-8), 7.72 (ddd, J = 1.7,
7.1, 8.1 Hz, 1 H, H-7), 7.78 (d, J = 8.2 Hz, 2 H,
H-2′,6′), 8.31 (dd, J = 1.7,
8.3 Hz, 1 H, H-5). ¹³C
NMR (75.47 MHz, CDCl3): δ = 21.6 (4′-CH3),
108.9 (C-3), 117.8 (C-8), 121.8 (C-10), 125.6 (C-6), 126.5 (C-5),
129.0 (C-3′,5′), 129.3 (C-2′,6′),
133.7 (C-1′), 134.1 (C-7), 141.7 (C-4′), 155.6
(C-9), 162.1 (C-2), 173.2 (C-4). MS (ESI+): m/z (%) = 315
(100) ([M + H]+, 79Br),
317 (90) ([M + H]+, 8¹Br), 337
(87) ([M + Na]+, 79Br),
339 (83) ([M + Na]+, 8¹Br).
Anal. Calcd for C16H11O2Br (315.16):
C, 60.98; H, 3.52. Found: C, 60.88; H, 3.52
<A NAME="RD683ST-16">16</A>
Joo YH.
Kim JK.
Synth. Commun.
1998,
28:
4287
<A NAME="RD683ST-17">17</A>
Miyake H.
Nishino S.
Nishimura A.
Sasaki M.
Chem. Lett.
2007,
36:
522
<A NAME="RD683ST-18">18</A>
Rinker B.
Schnakenburg G.
Nieger M.
Waldvogel SR.
Synthesis
2011,
0593
<A NAME="RD683ST-19">19</A>
Rocha D. H. A., Pinto D. C. G. A., Silva
A. M. S., Patonay T., Cavaleiro J. A. S.; unpublished results
<A NAME="RD683ST-20A">20a</A>
Fitzmaurice RJ.
Etheridge ZC.
Jumel E.
Woolfson DN.
Caddick S.
Chem. Commun.
2006,
4814
<A NAME="RD683ST-20B">20b</A>
Polshettiwar V.
Varma RS.
Acc. Chem. Res.
2008,
41:
629
<A NAME="RD683ST-21A">21a</A>
Kappe CO.
Angew. Chem. Int. Ed.
2004,
43:
6250
<A NAME="RD683ST-21B">21b</A>
Kappe CO.
Dallinger D.
Nat. Drug
Discovery
2006,
5:
51
<A NAME="RD683ST-22A">22a</A>
Jeffery T.
Tetrahedron Lett.
1985,
26:
2667
<A NAME="RD683ST-22B">22b</A>
Jeffery T.
Synthesis
1987,
70
<A NAME="RD683ST-22C">22c</A>
Woodcock S.
Branchaud BP.
Tetrahedron Lett.
2005,
46:
7213
<A NAME="RD683ST-22D">22d</A>
Pan K.
Noël S.
Pinel C.
Djakovitch L.
J. Organomet. Chem.
2008,
693:
2863
<A NAME="RD683ST-23">23</A>
Optimised procedure
for the synthesis of 3-styryl-flavones 4a-g: A mixture of the appropriate 3-bromo-flavone 2a-f (0.296
mmol), anhydrous K2CO3 (123 mg, 0.888 mmol),
tetrabutylammonium bromide (TBAB; 238 mg, 0.740 mmol), palladium
acetate (9.97 mg, 0.044 mmol) and styrene 3a (0.170
mL, 1.48 mmol) in DMF (6 mL), was poured into a two-necked flask
equipped with a magnetic stirring bar, fibre-optic temperature control,
and reflux condenser and placed under a nitrogen atmosphere. The mixture
was then irradiated in an Ethos SYNTH microwave (Milestone Inc.)
at constant power of 300 W from 5-10 min. After
that period, the reaction mixture was poured into a mixture of ice
(1 g) and water (10 mL) and extracted with diethyl ether (3 × 10
mL). The organic layer was evaporated to dryness and the obtained
residue was taken in ethyl acetate (10 mL) and washed with water
(2 × 10 mL). The organic layer was dried
with anhydrous sodium sulfate, evaporated and purified by column
chromatography (CHCl3-acetone, 9.6:0.4). After
solvent evaporation, the obtained residue was recrystallised from
ethanol to give 3-styrylflavones 4a-g [4a:
67 mg (70%); 4b: 68 mg (68%); 4c: 73 mg (70%); 4d:
66 mg (62%); 4e: 55 mg (50%); 4f: 51 mg (45%)]. The
reaction of 3-bromoflavone 2a (0.296 mmol) with
styrene 3b (1.48 mmol), under the same
reaction conditions, yielded 3-(3,4-dimethoxystyryl)flavone 4g (72 mg, 63%)
<A NAME="RD683ST-24">24</A>
(
E
)-3-(3,4-Dimethoxystyryl)flavone
(4g): Yellow solid; mp 158-160 ˚C. ¹H
NMR (300.13 MHz, CDCl3): δ = 3.86 (s,
3 H, 4′′-OCH3), 3.88 (s, 3 H, 3′′-OCH3),
6.72 (d, J = 16.2 Hz,
1 H, H-α), 6.82 (d, J = 8.1 Hz,
1 H, H-5′′), 6.93 (d, J = 1.6 Hz,
1 H, H-2′′), 6.95 (d, J = 9.2 Hz,
1 H, H-6′′), 7.44 (ddd, J = 1.7,
7.1, 8.3 Hz, 1 H, H-6), 7.51 (dd, J = 1.7, 8.3 Hz,
1 H, H-8), 7.53-7.58 (m, 3 H, H-3′,4′,5′),
7.69 (ddd, J = 1.7,
7.1, 8.3 Hz, 1 H, H-7), 7.76-7.79 (m,
2 H, H-2′,6′), 7.95 (d, J = 16.2 Hz,
1 H, H-β), 8.33 (dd, J = 1.7,
8.3 Hz, 1 H, H-5). ¹³C
NMR (75.47 MHz, CDCl3): δ = 55.8 (4′′-OCH3),
55.9 (3′′-OCH3), 109.3 (C-2′′),
111.2 (C-5′′), 117.8 (C-3), 117.9 (C-8), 118.3
(C-α), 119.3 (C-6′′), 123.5 (C-10), 125.1
(C-6), 126.3 (C-5), 128.4 (C-3′,5′), 129.9 (C-2′,6′), 130.6
(C-4′), 131.3 (C-1′′), 133.3 (C-1′),
133.4 (C-7), 134.1 (C-β), 148.8 (C-3′′),
148.9 (C-4′′), 155.4 (C-9), 162.5 (C-2), 177.6
(C-4). MS (ESI+): m/z (%) = 385
(100) [M + H]+, 407 (20) [M + Na]+.
Anal. Calcd for C25H20O4 (384.42):
C, 78.11; H, 5.24. Found: C, 78.15; H, 5.31
<A NAME="RD683ST-25">25</A>
Silva VLM.
Silva AMS.
Cavaleiro JAS.
Synlett
2010,
2565
<A NAME="RD683ST-26">26</A>
Yamashita S.
Bull.
Chem. Soc. Jpn.
1961,
34:
487
<A NAME="RD683ST-27">27</A>
5-Phenyl-7
H
-benzo[
c
]xanthen-7-one (5a): Mp 197-198 ˚C. ¹H
NMR (300.13 MHz, CDCl3): δ = 7.47 (br
dd, J = 7.0,
8.0 Hz, 1 H, H-9), 7.47-7.50 (m, 1 H,
H-4′), 7.52-7.54 (m, 4 H, H-2′,3′,5′,6′),
7.67 (ddd, J = 1.5,
6.2, 8.0 Hz, 1 H, H-3), 7.74 (ddd, J = 1.5, 6.2,
8.0 Hz, 1 H, H-2), 7.75 (br d, J = 8.0 Hz,
1 H, H-11), 7.81 (ddd, J = 1.3,
7.0, 8.0 Hz, 1 H, H-10), 8.02 (dd, J = 1.5, 8.0 Hz,
1 H, H-4), 8.24 (s, 1 H, H-6), 8.44 (dd, J = 1.3, 8.0 Hz,
1 H, H-8), 8.81 (dd, J = 1.5, 8.0 Hz,
1 H, H-1). ¹³C NMR (75.47
MHz, CDCl3): δ = 117.1 (C-6a), 118.1 (C-11),
121.9 (C-6), 122.5 (C-7a), 123.1 (C-1), 124.4 (C-12b), 124.5 (C-9),
126.6 (C-2), 126.7 (C-4), 126.8 (C-8), 127.6 (C-4′), 128.4
(C-2′,6′), 129.6 (C-3), 130.1 (C-3′,5′),
132.1 (C-10), 133.7 (C-4a), 134.4 (C-5), 136.6 (C-1′), 155.8
(C-12a), 168.4 (C-11a), 177.2 (C-7). MS (ESI+): m/z (%) = 323
(100) [M + H]+, 345
(22) [M + Na]+. MS
(EI+):
m/z calcd for C23H14O2:
322.0994; found: 322.0995
<A NAME="RD683ST-28">28</A>
5-Phenyl-5
H
-benzo[
c
]xanthen-7(6
H
)-one (6a): ¹H NMR (300.13
MHz, CDCl3): δ = 3.24 (dd, J = 9.0, 16.5 Hz,
1 H, H-6cis), 3.33 (dd, J = 7.3,
16.5 Hz, 1 H, H-6trans), 4.32 (dd, J = 7.3, 9.0 Hz,
1 H, H-5), 7.06 (dd, J = 7.6 Hz,
1 H, H-2), 7.18-7.23 (m, 2 H, H- 3′,5′),
7.23-7.26 (m, 1 H, H-4), 7.27-7.32 (m,
2 H, H-2′,6′), 7.38- 7.49 (m, 3 H,
H-9,3,4′), 7.59 (dd, J = 1.4,
8.3 Hz, 1 H, H-11), 7.69 (ddd, J = 1.4,
7.0, 8.3 Hz, 1 H, H-10), 8.09 (dd, J = 1.8, 7.6 Hz, 1 H,
H-1), 8.24 (dd, J = 1.4,
8.3 Hz, 1 H, H-8). ¹³C
NMR (75.47 MHz, CDCl3): δ = 27.2 (C-6),
43.1 (C-5), 115.4 (C-6a), 117.9 (C-11), 123.6 (C-7a), 124.0 (C-1),
125.9 (C-8), 126.8 (C-4), 127.3 (C-4′), 128.2 (C-3′,5′),
128.47 (C-12b), 128.5 (C-2′,6′), 128.7 (C-2),
131.4 (C-3), 133.3 (C-10), 141.7 (C-1′), 142.7 (C-4a),
155.6 (C-11a), 157.4 (C-12a), 177.2 (C-7). MS (EI+): m/z calcd
for C23H16O2: 324.1150; found:
324.1147
<A NAME="RD683ST-29">29</A>
Optimised procedure
for the synthesis of 5-phenyl-7
H
-benzo[
c
]xanthen-7-ones 5a-h:
A mixture of the appropriate 3-styrylflavone 4a-g (0.15 mmol) and a catalytic amount of
I2 (10% mol) in 1,2,4-trichlorobenzene (20 mL),
was poured into a three-necked flask equipped with a magnetic stirring
bar, reflux condenser and a high-pressure mercury UV lamp with 400 W
power. The mixture was then irradiated from 2 to 6 days. After that
period, the reaction mixture was poured into a silica gel column
and eluted with light petroleum to remove the excess of iodine and
1,2,4-trichlorobenzene. Upon changing the eluent to ethyl acetate-light
petroleum (1:9 or 3:7), 5-phenyl-7H-benzo[c]xanthen-7-ones were obtained,
which were recrystallised from ethanol 5a-h [5a:
50 mg (70%); 5b: 22 mg (45%); 5c: 50 mg (73%); 5d:
35 mg (74%); 5e: 15 mg (30%); 5f: 11 mg (20%); 5g:
23 mg (40%); 5h: 35 mg (60%)]
<A NAME="RD683ST-30">30</A>
Physical data of
6-hydroxy-3-nitro-5-phenyl-7
H
-benzo[
c
]xanthen-7-one (7e): ¹H
NMR (300.13 MHz, CDCl3): δ = 7.46 (br
d, J = 8.4 Hz,
2 H, H-3′,5′), 7.52-7.56 (m,
1 H, H-4′), 7.53-7.59 (m, 1 H,
H-9), 7.56-7.62 (m, 2 H, H-2′,6′),
7.79 (br d, J = 8.3 Hz,
1 H, H-11), 7.93 (ddd, J = 1.4,
7.0, 8.3 Hz, 1 H, H-10), 8.20 (dd, J = 2.2, 9.2 Hz, 1 H,
H-2), 8.41 (dd, J = 1.4,
8.3 Hz, 1 H, H-8), 8.51 (d, J = 2.2 Hz,
1 H, H-4), 8.77 (d, J = 9.2 Hz,
1 H, H-1), 12.71 (s, 1 H, 6-OH). ¹³C
NMR (75.47 MHz, CDCl3): δ = 109.5 (C-6a),
116.9 (C-2), 118.2 (C-11), 119.5 (C-5), 120.3 (C-12b), 121.3 (C-7a),
121.4 (C-4), 125.0 (C-1), 125.5 (C-9), 126.2 (C-8), 128.3 (C-4′),
128.9 (C-2′,6′), 131.0 (C-3′,5′), 133.3
(C-1′), 136.1 (C-10), 136.6 (C-4a), 148.7 (C-3), 153.0 (C-12a),
154.3 (C-6), 155.7 (C-11a), 182.0 (C-7) ppm. MS (EI+): m/z calcd
for C23H13O5N 383.0794; found:
383.0791
<A NAME="RD683ST-31">31</A>
Xu WZ.
Huang ZT.
Zheng QY.
J.
Org. Chem.
2008,
73:
5607
<A NAME="RD683ST-32">32</A>
Physical data of
3,4-dimethoxy-5-phenyl-7
H
-benzo[
c
]xanthen-7-one (5f): ¹H
NMR (300.13 MHz, CDCl3): δ = 3.18 (s,
3 H, 4-OCH3), 4.03 (s, 3 H, 3-OCH3), 7.34-7.46
(m, 6 H, H-9,2′,3′,4′,5′,6′),
7.49 (d, J = 9.2 Hz, 1 H,
H-2), 7.72 (d, J = 8.3 Hz,
1 H, H-11), 7.79 (ddd, J = 1.5,
7.0, 8.3 Hz, 1 H, H-10), 8.04 (s, 1 H,
H-6), 8.41 (dd, J = 1.5,
8.3 Hz, 1 H, H-8), 8.60 (d, J = 9.2 Hz,
1 H, H-1). ¹³C NMR (75.47
MHz, CDCl3): δ = 56.4 (4-OCH3),
60.6 (3-OCH3), 110.1 (C-6a), 114.0 (C-2), 118.0 (C-11),
120.1 (C-1), 122.6 (C-7a), 124.4 (C-9), 124.8 (C-6), 126.3 (C-4′), 126.6
(C-8), 126.9 (C-2′,6′), 129.2 (C-3′,5′),
130.4 (C-4a), 130.8 (C-5), 134.2 (C-10), 141.4 (C-12a), 144.6 (C-4),
155.1 (C-3), 156.7 (C-11a), 178.9 (C-7). MS (EI+): m/z calcd
for C25H18O4: 382.1205; found:
382.1207
<A NAME="RD683ST-33">33</A>
Physical data of
2,3-dimethoxy-5-phenyl-7
H
-benzo[
c
]xanthen-7-one (5g): ¹H
NMR (300.13 MHz, CDCl3): δ = 3.88 (s,
3 H, 3-OCH3), 4.18 (s, 3 H, 2-OCH3), 7.34
(s, 1 H, H-4), 7.45 (br dd, J = 7.0,
8.2 Hz, 1 H, H-9), 7.46-7.49 (m, 1 H,
H-4′), 7.50-7.58 (m, 4 H, H-2′,3′,5′,6′), 7.75
(dd, J = 1.7,
8.2 Hz, 1 H, H-11), 7.79 (ddd, J = 1.7,
7.0, 8.2 Hz, 1 H, H-10), 8.01 (s, 1 H,
H-1), 8.13 (s, 1 H, H-6), 8.45 (dd, J = 1.7,
8.2 Hz, 1 H, H-8). ¹³C
NMR (75.47 MHz, CDCl3): δ = 55.9 (3-OCH3),
56.2 (2-OCH3), 102.0 (C-4), 105.9 (C-1), 116.4 (C-6a),
118.0 (C-11), 119.2 (C-12b), 120.7 (C-6), 122.4 (C-1′),
124.2 (C-9), 126.5 (C-7a), 126.7 (C-8), 127.6 (C-4′), 128.5
(C-2′,6′), 129.9 (C-3′,5′),
131.4 (C-4a), 134.1 (C-5), 135.3 (C-10), 139.9 (C-12a), 149.8 (C-2),
151.9 (C-3), 155.8 (C-11a), 176.9 (C-7). MS (EI+):
m/z calcd
for C25H18O4: 382.1205; found:
382.1207