Synlett 2012(7): 1082-1084  
DOI: 10.1055/s-0031-1290658
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

A Short-Step Asymmetric Synthesis of Dehydrodiconiferyl Alcohol via C-H Insertion Reaction

Shogo Matsumoto, Tomohiro Asakawa, Yoshitaka Hamashima, Toshiyuki Kan*
School of Pharmaceutical Sciences, University of Shizuoka and Global COE Program, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
Fax: +81(54)2645745; e-Mail: kant@u-shizuoka-ken.ac.jp;
Further Information

Publication History

Received 9 December 2011
Publication Date:
28 March 2012 (online)

Abstract

A rhodium-catalyzed intramolecular C-H insertion reaction using a chiral auxiliary and a chiral catalyst was employed to achieve double asymmetric induction of a trans-disubstituted dihydrobenzofuran ring, as the key reaction of a stereoselective synthesis of (-)-dehydrodiconiferyl alcohol in 13 steps from commercially available guaiacol.

    References and Notes

  • For general reviews on lignans and neolignans, see:
  • 1a Ward RS. Nat. Prod. Rep.  1997,  14:  43 
  • 1b Ward RS. Nat. Prod. Rep.  1999,  16:  75 
  • 2a Yu YU. Kang SY. Park HY. Sung SH. Lee EJ. Kim SY. Kim YC. J. Pharm. Pharmacol.  2000,  52:  1163 
  • 2b Kikuzaki H. Kayano S. Fukutsuka N. Aoki A. Kasamatsu K. Yamasaki Y. Mitani T. Nakatani N. J. Agric. Food Chem.  2004,  52:  344 
  • 2c Carini M. Aldini G. Orioli M. Facino RM. Planta Med.  2002,  68:  193 
  • 3a Aper S. Vlietinck A. Pieters L. Phytochem. Rev.  2003,  2:  201 
  • 3b Lee JS. Kim J. Yu YU. Kim YC. Arch. Pharm. Res.  2004,  27:  1043 
  • 4 Shin JS. Kim YM. Hong SS. Kang HS. Yang YJ. Lee DK. Hwang BY. Ro JS. Lee MK. Arch. Pharm. Res.  2005,  28:  1337 
  • 5 Pauletti PM. Araújo AR. Young MCM. Giesbrecht AM. Bolzani VS. Phytochemistry  2000,  55:  597 
  • 6 Mitsuhashi S. Kishimoto T. Uraki Y. Okamoto T. Ubukata M. Bioorg. Med. Chem.  2008,  16:  2645 
  • For reviews on chemical synthesis of neolignans, see:
  • 7a Sefkow M. Synthesis  2003,  2595 
  • 7b Graening T. Thrun F. Comprehensive Heterocyclic Chemistry III   Vol. 3:  Katritzky AR. Taylor RJK. Ramsden CA. Scriven EFV. Elsevier; Oxford: 2008.  p.553-561  
  • 8a Feringa B. Wynberg H. Bioorg. Chem.  1978,  7:  397 
  • 8b Rummakko P. Brunow G. Orlandi M. Rindone B. Synlett  1999,  333 
  • 8c Orlandi M. Rindone B. Molteni G. Rummakko P. Brunow G. Tetrahedron  2001,  57:  371 
  • 9 Okazaki M. Shuto Y. Biosci. Biotechnol. Biochem.  2001,  65:  1134 
  • For reviews of C-H insertion reactions, see:
  • 10a Doyle MP. Mckervey MA. Ye T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides   Willey; New York: 1998. 
  • 10b Taber DF. Stiriba S.-E. Chem. Eur. J.  1998,  4:  990 
  • 10c Davies HML. Beckwith REJ. Chem. Rev.  2003,  103:  2861 
  • 10d Davies HWL. Manning JR. Nature (London)  2008,  451:  417 
  • 10e Doyle MP. Duffy R. Ratnikov M. Zhou L. Chem. Rev.  2010,  110:  704 
  • 11a Kan T. Inoue T. Kawamoto Y. Yonehara M. Fukuyama T. Synlett  2006,  1583 
  • 11b Kan T. Kawamoto Y. Asakawa T. Furuta T. Fukuyama T. Org. Lett.  2008,  10:  169 
  • 11c Higashi T. Isobe Y. Ouchi H. Suzuki H. Okazaki Y. Asakawa T. Furuta T. Wakimoto T. Kan T. Org. Lett.  2011,  13:  1089 
  • 11d Wakimoto T. Miyata K. Ouchi H. Asakawa T. Nukaya H. Suwa Y. Kan T. Org. Lett.  2011,  13:  2789 
  • 12a Kurosawa W. Kan T. Fukuyama T. J. Am. Chem. Soc.  2003,  125:  8112 
  • 12b Kurosawa W. Kan T. Fukuyama T. Synlett  2003,  1028 
  • 12c Koizumi Y. Kobayashi H. Wakimoto T. Furuta T. Fukuyama T. Kan T. J. Am. Chem. Soc.  2008,  130:  16854 
  • 13 Davies HML. Hansen T. J. Am. Chem. Soc.  1997,  119:  9075 
  • 14 García-Muñoz S. Álvarez-Corral M. Jiménez-González L. López-Sánchez C. Rosales A. Muñoz-Dorado M. Rodríguez-García I. Tetrahedron  2006,  62:  12182 
  • 15a Saito H. Oishi H. Kitagawa S. Nakamura S. Anada M. Hashimoto S. Org. Lett.  2002,  4:  3887 
  • 15b Natori Y. Tsutsui H. Sato N. Nakamura S. Nambu H. Shiro M. Hashimoto S. J. Org. Chem.  2009,  74:  4418 
  • 16 Davies HML. Grazini MVA. Aouad E. Org. Lett.  2001,  3:  1475 
  • 17 Baum JS. Shook DA. Davies HML. David HD. Synth. Commun.  1987,  17:  1709 
  • 20 Hirai N. Okamoto M. Udagawa H. Yamamuro M. Kato M. Koshimizu K. Biosci. Biotechnol. Biochem.  1994,  58:  1679 
  • 22 Heck RF. Org. React.  1982,  27:  345 
  • 23 Ganem B. Small VR. J. Org. Chem.  1974,  39:  3728 
18

This reaction was found to be sensitive to the reaction temperature: when the reaction was carried out at 0 ˚C, the chemical yield was decreased significantly due to the formation of an α-hydroxylated byproduct. Interestingly, reverse diastereoselectivity was observed at -20 ˚C, giving the product in 57% yield with a cis-substituted isomer being major (2.4:1 dr). Although the reason is unclear, these results suggest that careful control of the reaction temperature is necessary to ensure that the desired reaction pathway operates.

19

As for the detailed discussion on the determination of the stereochemistry, see the Supporting Information.

21

It seems likely that the observed absolute stereochemistry is mainly governed by the chiral auxiliary, and not by the chiral Rh catalyst, in accord with our previous results.¹²

24

Spectral Data for 1
IR (neat): 818, 856, 966, 1034, 1146, 1215, 1275, 1331, 1464, 1496, 1518, 1603, 1703, 2361, 2926, 3414 cm. ¹H NMR (500 MHz, acetone-d 6): δ = 2.82 (s, 2 H), 3.52 (q, J = 6.3 Hz, 1 H), 3.81 (s, 3 H), 3.83-3.90 {m, 5 H [a methoxy group (3 H) was included at δ = 3.85 ppm as a singlet peak]}, 4.20 (dt, J = 1.2, 5.2 Hz, 2 H), 5.55 (d, J = 6.3 Hz, 1 H), 6.23 (td, J = 5.2, 16.0 Hz, 1 H), 6.51 (d, J = 16.0 Hz, 1 H), 6.80 (d, J = 8.0 Hz, 1 H), 6.87 (dd, J = 1.7, 8.0 Hz, 1 H), 6.94 (d, J = 1.2 Hz, 1 H), 6.97 (s, 1 H), 7.03 (d, J = 1.7 Hz, 1 H), 7.59 (s, 1 H). ¹³C NMR (125 MHz, acetone-d 6): δ = 54.0, 55.4, 55.5, 62.6, 63.8, 87.7, 109.6, 110.8, 114.8, 115.2, 118.8, 127.6, 129.6, 129.7, 131.1, 133.6, 144.4, 146.5, 147.5, 148.1. MS-FAB: m/z = 358 [M]+. HRMS: m/z calcd for C20H22NaO6 [M + Na]+: 381.1314; found: 381.1309. [α]D ²³
-45.9 (c 2.67, acetone).