Subscribe to RSS
DOI: 10.1055/s-0031-1290658
A Short-Step Asymmetric Synthesis of Dehydrodiconiferyl Alcohol via C-H Insertion Reaction
Publication History
Publication Date:
28 March 2012 (online)
Abstract
A rhodium-catalyzed intramolecular C-H insertion reaction using a chiral auxiliary and a chiral catalyst was employed to achieve double asymmetric induction of a trans-disubstituted dihydrobenzofuran ring, as the key reaction of a stereoselective synthesis of (-)-dehydrodiconiferyl alcohol in 13 steps from commercially available guaiacol.
Key words
neolignan - dehydrodiconiferyl alcohol - rhodium - C-H insertion - double asymmetric induction
- Supporting Information for this article is available online:
- Supporting Information
- For general reviews on lignans and neolignans, see:
-
1a
Ward RS. Nat. Prod. Rep. 1997, 14: 43 -
1b
Ward RS. Nat. Prod. Rep. 1999, 16: 75 -
2a
Yu YU.Kang SY.Park HY.Sung SH.Lee EJ.Kim SY.Kim YC. J. Pharm. Pharmacol. 2000, 52: 1163 -
2b
Kikuzaki H.Kayano S.Fukutsuka N.Aoki A.Kasamatsu K.Yamasaki Y.Mitani T.Nakatani N. J. Agric. Food Chem. 2004, 52: 344 -
2c
Carini M.Aldini G.Orioli M.Facino RM. Planta Med. 2002, 68: 193 -
3a
Aper S.Vlietinck A.Pieters L. Phytochem. Rev. 2003, 2: 201 -
3b
Lee JS.Kim J.Yu YU.Kim YC. Arch. Pharm. Res. 2004, 27: 1043 - 4
Shin JS.Kim YM.Hong SS.Kang HS.Yang YJ.Lee DK.Hwang BY.Ro JS.Lee MK. Arch. Pharm. Res. 2005, 28: 1337 - 5
Pauletti PM.Araújo AR.Young MCM.Giesbrecht AM.Bolzani VS. Phytochemistry 2000, 55: 597 - 6
Mitsuhashi S.Kishimoto T.Uraki Y.Okamoto T.Ubukata M. Bioorg. Med. Chem. 2008, 16: 2645 - For reviews on chemical synthesis of neolignans, see:
-
7a
Sefkow M. Synthesis 2003, 2595 -
7b
Graening T.Thrun F. Comprehensive Heterocyclic Chemistry III Vol. 3:Katritzky AR.Taylor RJK.Ramsden CA.Scriven EFV. Elsevier; Oxford: 2008. p.553-561 -
8a
Feringa B.Wynberg H. Bioorg. Chem. 1978, 7: 397 -
8b
Rummakko P.Brunow G.Orlandi M.Rindone B. Synlett 1999, 333 -
8c
Orlandi M.Rindone B.Molteni G.Rummakko P.Brunow G. Tetrahedron 2001, 57: 371 - 9
Okazaki M.Shuto Y. Biosci. Biotechnol. Biochem. 2001, 65: 1134 - For reviews of C-H insertion reactions, see:
-
10a
Doyle MP.Mckervey MA.Ye T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds: From Cyclopropanes to Ylides Willey; New York: 1998. -
10b
Taber DF.Stiriba S.-E. Chem. Eur. J. 1998, 4: 990 -
10c
Davies HML.Beckwith REJ. Chem. Rev. 2003, 103: 2861 -
10d
Davies HWL.Manning JR. Nature (London) 2008, 451: 417 -
10e
Doyle MP.Duffy R.Ratnikov M.Zhou L. Chem. Rev. 2010, 110: 704 -
11a
Kan T.Inoue T.Kawamoto Y.Yonehara M.Fukuyama T. Synlett 2006, 1583 -
11b
Kan T.Kawamoto Y.Asakawa T.Furuta T.Fukuyama T. Org. Lett. 2008, 10: 169 -
11c
Higashi T.Isobe Y.Ouchi H.Suzuki H.Okazaki Y.Asakawa T.Furuta T.Wakimoto T.Kan T. Org. Lett. 2011, 13: 1089 -
11d
Wakimoto T.Miyata K.Ouchi H.Asakawa T.Nukaya H.Suwa Y.Kan T. Org. Lett. 2011, 13: 2789 -
12a
Kurosawa W.Kan T.Fukuyama T. J. Am. Chem. Soc. 2003, 125: 8112 -
12b
Kurosawa W.Kan T.Fukuyama T. Synlett 2003, 1028 -
12c
Koizumi Y.Kobayashi H.Wakimoto T.Furuta T.Fukuyama T.Kan T. J. Am. Chem. Soc. 2008, 130: 16854 - 13
Davies HML.Hansen T. J. Am. Chem. Soc. 1997, 119: 9075 - 14
García-Muñoz S.Álvarez-Corral M.Jiménez-González L.López-Sánchez C.Rosales A.Muñoz-Dorado M.Rodríguez-García I. Tetrahedron 2006, 62: 12182 -
15a
Saito H.Oishi H.Kitagawa S.Nakamura S.Anada M.Hashimoto S. Org. Lett. 2002, 4: 3887 -
15b
Natori Y.Tsutsui H.Sato N.Nakamura S.Nambu H.Shiro M.Hashimoto S. J. Org. Chem. 2009, 74: 4418 - 16
Davies HML.Grazini MVA.Aouad E. Org. Lett. 2001, 3: 1475 - 17
Baum JS.Shook DA.Davies HML.David HD. Synth. Commun. 1987, 17: 1709 - 20
Hirai N.Okamoto M.Udagawa H.Yamamuro M.Kato M.Koshimizu K. Biosci. Biotechnol. Biochem. 1994, 58: 1679 - 22
Heck RF. Org. React. 1982, 27: 345 - 23
Ganem B.Small VR. J. Org. Chem. 1974, 39: 3728
References and Notes
This reaction was found to be sensitive to the reaction temperature: when the reaction was carried out at 0 ˚C, the chemical yield was decreased significantly due to the formation of an α-hydroxylated byproduct. Interestingly, reverse diastereoselectivity was observed at -20 ˚C, giving the product in 57% yield with a cis-substituted isomer being major (2.4:1 dr). Although the reason is unclear, these results suggest that careful control of the reaction temperature is necessary to ensure that the desired reaction pathway operates.
19As for the detailed discussion on the determination of the stereochemistry, see the Supporting Information.
21It seems likely that the observed absolute stereochemistry is mainly governed by the chiral auxiliary, and not by the chiral Rh catalyst, in accord with our previous results.¹²
24
Spectral Data
for 1
IR (neat): 818, 856, 966, 1034, 1146, 1215,
1275, 1331, 1464, 1496, 1518, 1603, 1703, 2361, 2926, 3414 cm-¹.
¹H
NMR (500 MHz, acetone-d
6): δ = 2.82
(s, 2 H), 3.52 (q, J = 6.3
Hz, 1 H), 3.81 (s, 3 H), 3.83-3.90 {m, 5 H [a
methoxy group (3 H) was included at δ = 3.85 ppm
as a singlet peak]}, 4.20 (dt, J = 1.2,
5.2 Hz, 2 H), 5.55 (d, J = 6.3
Hz, 1 H), 6.23 (td, J = 5.2,
16.0 Hz, 1 H), 6.51 (d, J = 16.0
Hz, 1 H), 6.80 (d, J = 8.0
Hz, 1 H), 6.87 (dd, J = 1.7,
8.0 Hz, 1 H), 6.94 (d, J = 1.2
Hz, 1 H), 6.97 (s, 1 H), 7.03 (d, J = 1.7
Hz, 1 H), 7.59 (s, 1 H). ¹³C NMR (125
MHz, acetone-d
6): δ = 54.0,
55.4, 55.5, 62.6, 63.8, 87.7, 109.6, 110.8, 114.8, 115.2, 118.8, 127.6,
129.6, 129.7, 131.1, 133.6, 144.4, 146.5, 147.5, 148.1. MS-FAB: m/z = 358 [M]+.
HRMS: m/z calcd for C20H22NaO6 [M + Na]+:
381.1314; found: 381.1309. [α]D
²³
-45.9
(c 2.67, acetone).