Dtsch Med Wochenschr 2012; 137(04): 143-148
DOI: 10.1055/s-0031-1298814
Übersicht | Review article
Nephrologie
© Georg Thieme Verlag KG Stuttgart · New York

Nephrologische Nebenwirkungen einer Langzeittherapie mit Lithium

Renal side effects of long-term lithium therapy
C. Ibbeken
1   1. Medizinische Klinik, St. Franziskus Hospital Münster
,
J. U. Becker
2   Institut für Pathologie, Medizinische Hochschule Hannover
,
M. W. Baumgärtel
1   1. Medizinische Klinik, St. Franziskus Hospital Münster
› Author Affiliations
Further Information

Publication History

20 June 2011

14 September 2011

Publication Date:
18 January 2012 (online)

Zusammenfassung

Lithium-Salze sind Therapie der ersten Wahl in der Phasenprophylaxe bipolarer Störungen. Die Langzeittherapie geht häufig mit Nebenwirkungen einher, welche die Fachgebiete der Nephrologie, der Endokrinologie und der endokrinen Chirurgie berühren. In dieser Übersichtsarbeit werden nephrologische Nebenwirkungen hervorgehoben.

Unter Behandlung mit Lithium wird das gehäufte Auftreten einer Resistenz gegen das antidiuretische Hormon (ADH) mit nephrogenem Diabetes insipidus, ein Lithium-getriggerter Hyperparathyreoidismus mit Hyperkalzämie und eine chronisch-interstitielle Nephritis mit der Bildung von Mikrozysten beobachtet. Langzeit-Patienten haben ein erhöhtes Risiko für die Entwicklung einer chronischen Niereninsuffizienz. Selten kommt es auch zur Dialyse-Abhängigkeit. Die rechtzeitige Beendigung der Lithium-Therapie scheint dies verhindern zu können.

Um die Sicherheit einer Lithium-Therapie zu gewährleisten sind regelmäßige Bestimmungen des Serum-Lithium-Spiegels, Kontrollen der Retentionsparameter, des Spiegels des Thyreoidea stimulierenden Hormons (TSH) und des Kalzium-Spiegels sowie der Urin-Osmolarität essenziell. Rechtzeitig –  also bereits bei einem leichten Anstieg der Retentionsparameter – sollte eine nephrologische bzw. internistische Vorstellung erfolgen.

Abstract

Lithium is widely used in the treatment of bipolar disorders. Long-term administration of lithium often leads to side effects concerning the subjects: nephrology, endocrinology and surgery. This review emphasizes nephrotoxicity.

Lithium treatment may disturb responsiveness to antidiuretic hormone (ADH), causing a nephrogenic diabetes insipidus. Furthermore long-term lithium therapy may trigger hyperparathyreoidism with hypercalcemia and chronic interstitial nephritis with development of microcysts. Long-term patients have an increased risk to develop impaired renal function. Lithium-induced endstage renal disease is rare. Termination of lithium treatment may decrease the risk of progression.

To ensure security of lithium treatment regular controls of urine osmolarity, lithium-, creatinine- , thyroid stimulating hormone- and calcium-levels are essential. Patients with decreased renal function should be referred to a specialist early.

 
  • Literatur

  • 1 Bassilios N, Martel P, Godard V et al. Monitoring of glomerular filtrating rate in lithium-treated outpatients – an ambulatory laboratory database surveillance. Nephrol Dial Transplant 2008; 23: 562-565
  • 2 Bedford JJ, Weggery S, Ellis G et al. Lithium-induced Nephrogenic Diabetes insipidus: Renal Effects of Amiloride. Clin J Am Soc Nephrol 2008; 3: 1324-1331
  • 3 Bendz H, Aurell M, Lanke J. A historical cohort study of kidney damage in long-term lithium patients: continued surveillance needed. Eur Psychiatry 2001; 16: 199-206
  • 4 Bendz H, Schön S, Attman PO et al. Renal failure occurs in chronic lithium treatment but is uncommon. Kidney International 2009; 77: 219-224
  • 5 Bendz H, Sjödin I, Toss G et al. Hyperparathyroidism and longterm lithium therapy – A cross-sectional study and the effect of lithium withdrawal. J Intern Med 1996; 240: 357-365
  • 6 Boton R, Gaviria M, Batlle DC. Prevalence, pathogenesis, and treatment of renal dysfunction associated with chronic lithiumtherapy. Am J Kidney Dis 1987; 10: 329-345
  • 7 Christensen BM, Marples D, Kim YH et al. Changes in cellular composition of kidney collecting duct cells in rats with lithium-induced NDI. Am J Physiol Cell Physiol 2004; 286: 952-964
  • 8 Christensen BM, Zuber AM, Loffing J et al. alphaENaC-mediated lithium absorption promotes nephrogenic diabetes insipidus. J Am Soc Nephrol 2011; 22: 253-261
  • 9 Christiansen C, Baastrup PC, Lindgreen P et al. Endocrine effects of lithium: II. 'Primary' hyperparathyroidism. Acta Endocrinol (Copenh) 1978; 88: 528-534
  • 10 Farres MT, Ronco P, Saadoun D et al. Chronic Lithium Nephropathie: MR Imaging for diagnosis. Radiology 2003; 229: 570-574
  • 11 Finley PR, Warner MD, Peabody CA. Clinical relevance of drug interactions with lithium. Clin Pharmacokinet 1995; 29: 172-191
  • 12 Freeman MP, Freeman SA. Lithium: clinical considerations in internal medicine. Am J Med 2006; 119: 478-481
  • 13 Frew IJ, Thoma CR, Greorgiev S et al. pVHL an PTEN tumor suppressor proteins cooperatively suppress kidney cyst formation. EMBO J 2008; 27: 1747-1757
  • 14 Garfinkel PE, Ezrin C, Stancer HC. Hypothyroidism and hyperparathyroidism associated with lithium. Lancet 1973; 2: 331-332
  • 15 Gregoor PS, de Jong GM. Lithium hypercalcemia, hyperparathyroidism, and cinacalcet. Kidney Int 2007; 71: 470
  • 16 Grünfeld JP, Rossier BC. Lithium nephrotoxicity revisited. Nat Rev Nephrol 2009; 5: 270-276
  • 17 Handler J. Lithium and antihypertensice medication: a potentially dangerous interaction. J Clin Hypertens (Greenwich) 2009; 11: 738-42
  • 18 Hestbech J, Hansen HE, Amdisen A et al. Chronic renal lesions following long-term treatment with lithium. Kidney Int 1977; 12: 205-213
  • 19 Hoffert JD, Pisitkun T, Wang G et al. Quantitative phosphoproteomics of vasopressin-sensitive renal cells: regulation of aquaporin-2 phosphorylation at two sites. Proc Natl Acad Sci USA 2006; 103: 7159-7164
  • 20 Hundley JC, Woodrum DT, Saunders BD et al. Revisiting lithium-associated hyperparathyroidism in the era of intraoperative parathyroid hormone monitoring. Surgery 2005; 138: 1027-1031
  • 21 Janowsky DS, Soares J, Hatch JP et al. Lithium effect on renal glomerular function in individuals with intellectual disability. J Clin Psychopharmacol 2009; 29: 296-299
  • 22 Kortenoeven ML, Li Y, Shaw S et al. Amiloride blocks lithium entry through the sodium channel thereby attenuating the resultant nephrogenic diabetes insipidus. Kidney Int 2009; 76: 44-53
  • 23 Kwon TH, Laursen UH, Marples D et al. Altered expression of renal AQPs and Na-transporters in rats with lithium-induced NDI. Am J Physiol Renal Physiol 2000; 279: 552-564
  • 24 Laursen UH, Pihaskaski-Maunsbach K, Kwon TH et al. Changes of rat kidney AQP2, and Na, K-ATPase mRNA expression in lithium-induced nephrogenic diabetes insipidus. Nephron Exp Nephrol 2004; 97: 1-16
  • 25 Markowitz GS, Radhakrishnan J, Kambham N et al. Lithium nephrotoxicity: a progressive combined glomerular and tubulointerstitial nephropathy. J Am Soc Nephrol 2000; 11: 1439-1448
  • 26 McCann SM, Daly J, Kelly CB. The impact of long-term lithium treatment on renal function in an outpatient population. Ulster Med J 2008; 77: 102-105
  • 27 Nielsen J, Kwon TH, Frøkiaer J et al. Lithium-induced NDI in rats is associated with loss of alpha-ENaC regulation by aldosterone in CCD. Am J Physiol Renal Physiol 2006; 290: 1222-1233
  • 28 Nielsen J, Kwon TH, Praetorius J et al. Segment-specific ENaC downregulation in kidney of rats with lithium-induced NDI. Am J Physiol Renal Physiol 2003; 285: 1198-1209
  • 29 Presne C, Fakhouri F, Noël LH et al. Lithium-induced nephropathy: rate of progression and prognostic factors. Kidney Int 2003; 64: 585-592
  • 30 Rao R, Zhang MZ, Zhao M et al. Lithium treatment inhibits renal GSK-3 activity and promotes cyclooxygenase 2-dependent polyuria. Am J Physiol Renal Physiol 2005; 288: 642-649
  • 31 Rifai MA, Moles JK, Harrington DP. Lithium-induced hypercalcemia and parathyroid dysfunction. Psychosomatics 2001; 42: 359-361
  • 32 Robben JH, Knoers NV, Deen PM. Cell biological aspects of the vasopressin type-2 receptor and aquaporin 2 water channel in nephrogenic diabetes insipidus. Am J Physiol Renal Physiol 2006; 291: 257-270
  • 33 Sloand JA, Shelly MA. Normalization of lithium-induced hypercalcemia and hyperparathyroidism with cinacalcet hydrochloride. Am J Kidney Dis 2006; 48: 832-837
  • 34 Stone KA. Lithium-induced nephrogenic diabetes insipidus. J Am Board Fam Pract 1999; 12: 43-47
  • 35 Thoma CR, Frew IJ, Hoerner CR et al. pVHL and GSKbeta are components of primary cilium-maintenance signalling network. Nat Cell Biol 2007; 9: 588-595
  • 36 Thoma CR, Frew IJ, Krek W. The VHL tumor suppressor: riding tandem with GSK3beta in primary cilium maintenance. Cell Cycle 2007; 6: 1809-1813
  • 37 Tredget J, Kirov A, Kirov G. Effects of chronic lithium treatment on renal function. J Affect Disord 2010; 126: 436-440
  • 38 Tuazon J, Casalino D, Syed E et al. Lithium-associated kidney microcysts. ScientificWorldJournal 2008; 31: 828-829
  • 39 Wada A. Lithium and neuropychiatric therapeutics: neuroplasticitiy via glycogen synthethase kinase-3, -catenin, and neurotropin cascades. J Parmacol Sci 2009; 110: 14-28
  • 40 Waring WS. Management of Lithium toxicity. Toxicol Rev 2006; 25: 221-230
  • 41 Wilting I, Egberts AC, Heerdink ER et al. Evaluation of available treatment guidelines fort he management of lithium intoxication. Ther Drug Monit 2009; 31: 247-260