Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2013; 24(7): 883-885
DOI: 10.1055/s-0032-1318490
DOI: 10.1055/s-0032-1318490
letter
Asymmetric Henry Reactions of Aldehydes Using Chiral Biaryl-Based Bis(thiourea) Organocatalysts
Further Information
Publication History
Received: 23 January 2013
Accepted after revision: 28 February 2013
Publication Date:
11 March 2013 (online)
Abstract
Biaryl-based bis(thiourea) was found to be an efficient organocatalyst for the asymmetric Henry reaction. High enantioselectivity of up to 93% ee was obtained for the reaction of nitromethane with aryl aldehydes when the combination of N,O-bis(trimethylsilyl)trifluoroacetoamide (BSTFA) with a catalytic amount of potassium acetate was used as the base.
-
References and Notes
- 1 Present address: Institute for Materials Chemistry and Engineering (IMCE), Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
- 2a Boura J, Gogoi N, Saikia PP, Barua CN. Tetrahedron: Asymmetry 2006; 17: 3315
- 2b Palomo C, Oiarbide M, Laso A. Eur. J. Org. Chem. 2007; 2561
- 3 Sasai H, Suzuki T, Arai S, Arai T, Shibasaki M. J. Am. Chem. Soc. 1992; 114: 4418
- 4a Trost BM, Yeh VS. C. Angew. Chem. Int. Ed. 2002; 41: 861
- 4b Evans DA, Seidel D, Rueping M, Lam HW, Shaw JT, Downey CW. J. Am. Chem. Soc. 2003; 125: 12692
- 4c Palomo C, Oiarbide M, Laso A. Angew. Chem. Int. Ed. 2005; 44: 3881
- 4d Xiong Y, Wang X, Huang X, Wen Y, Feng X. Chem. Eur. J. 2007; 13: 829
- 4e Ma K, You J. Chem. Eur. J. 2007; 13: 1863
- 4f Bandini M, Piccinelli F, Tommasi S, Umani-Ronchi A, Ventrici C. Chem. Commun. 2007; 616
- 4g Arai T, Takashita R, Endo Y, Watanabe M, Yanagisawa A. J. Org. Chem. 2008; 73: 4903
- 4h Blay G, Domingo LR, Hernández-Olmos V, Pedro JR. Chem. Eur. J. 2008; 14: 4725
- 4i Nitabaru T, Kumagai N, Shibasaki M. Tetrahedron Lett. 2008; 49: 272
- 4j Kowalczyk R, Kwiatkowski K, Skarzewski J, Jurczak J. J. Org. Chem. 2009; 74: 753
- 4k Arai T, Suzuki K. Synlett 2009; 3167
- 4l Lee J.-M, Kim J, Shin Y, Yeom C.-E, Lee JE, Hyeon T, Kim BM. Tetrahedron: Asymmetry 2010; 21: 285
- 4m Xin D, Ma Y, He F. Tetrahedron: Asymmetry 2010; 21: 333
- 4n Noole A, Lippur K, Metsala A, Loop M, Kanger T. J. Org. Chem. 2010; 75: 1313
- 4o Panov I, Drabina P, Padělková Z, Šimůnek P, Sedlák M. J. Org. Chem. 2011; 76: 4787
- 4p Didier D, Magnier-Bouvier C, Schulz E. Adv. Synth. Catal. 2011; 353: 1087
- 4q Kodama K, Sugawara K, Hirose T. Chem. Eur. J. 2011; 17: 13584
- 4r Zhou Y, Dong J, Zhang F, Gong Y. J. Org. Chem. 2011; 76: 588
- 4s Cheng H.-G, Lu L.-Q, Wang T, Chen J.-R, Xiao W.-J. Chem. Commun. 2012; 48: 5596
- 4t White DJ, Shaw S. Org. Lett. 2012; 14: 6270
- 4u Angulo B, García IJ, Herrerías IC, Mayoral AJ, Miñana CA. J. Org. Chem. 2012; 77: 5525
- 5 Chinchilla R, Nájera C, Sánchez-Agulló P. Tetrahedron: Asymmetry 1994; 5: 1393
- 6 Ooi T, Doda K, Maruoka K. J. Am. Chem. Soc. 2003; 125: 2054
- 7a Sohtome Y, Hashimoto Y, Nawasaga K. Adv. Synth. Catal. 2005; 347: 1643
- 7b Sohtome Y, Takemura N, Takada K, Takagi R, Iguchi T, Nagasawa K. Chem. Asian J. 2007; 2: 1150
- 8 Marcelli T, van der Haas RN. S, van Maarseveen JH, Hiemstra H. Angew. Chem. Int. Ed. 2006; 45: 929
- 9 Liu X, Jiang J, Shi M. Tetrahedron: Asymmetry 2007; 18: 2773
- 10 Ube H, Terada M. Bioorg. Med. Chem. Lett. 2009; 19: 3895
- 11 Uraguchi D, Sakaki S, Ooi T. J. Am. Chem. Soc. 2007; 129: 12392
- 12 Tang Z, Iida H, Hu H.-Y, Yashima E. ACS Macro Lett. 2012; 1: 261
- 13 Lang K, Park J, Hong S. Angew. Chem. Int. Ed. 2012; 51: 1620
- 14 Nakayama Y, Gotanda T, Ito K. Tetrahedron Lett. 2011; 52: 6234
- 15a Leutenegger U, Umbricht G, Fahrni C, von Matt P, Pfaltz A. Tetrahedron 1992; 48: 2143
- 15b For a review, see: Trost BM, van Vranken DL. Chem. Rev. 1996; 96: 395
- 16 Use of the combination of BSTFA and KOAc as a base for palladium-catalyzed asymmetric allylic substitution: Ito K, Kashiwagi R, Hayashi S, Uchida T, Katsuki T. Synlett 2001; 284
- 17 Typical Experimental Procedure is Exemplified by Henry Reaction of 4-Nitrobenzaldehyde with Nitromethane Catalyst 1 (8.1 mg, 10.0 μmol) was placed in microtube under nitrogen and to this tube was added BSTFA (5.5 μL, 20.0 μmol) in DMF (100 μL), a catalytic amount of KOAc (0.4–0.5 mg, 4.1–5.1 μmol), and 4-nitrobenzaldehyde (16.1 mg, 0.1 mmol). After the mixture was cooled to –40 °C, MeNO2 (55 μL, 1.0 mmol) was added at that temperature. After being stirred for 23 h at –40 °C, the mixture was quenched with H2O and extracted with EtOAc. The organic extract was dried over anhyd MgSO4 and concentrated. Silica gel chromatography of the residue (hexane–Et2O = 6:4) gave the desired product (19.3 mg, 91%). The ee of the product was determined to be 91% by HPLC using chiral stationary-phase column as described in the footnote of Table 1.
- 18 Time-course studies suggested that the retro process is not involved in the reaction (3 h: 15% yield, 89% ee, 6 h: 35% yield, 88% ee, 12 h: 47% yield, 88% ee, 24 h: 90% yield, 89% ee). For the retro process in the asymmetric Henry reaction using organocatalyst, see ref. 7b.
- 19 We also examined the reaction of aldehydes and EtNO2, but the reaction did not proceed.
- 20 Absolute configuration of all nitro alcohols were determined by comparison of elution order of HPLC and specific rotation with the reported value.4b,g,j,9
- 21a At the moment, we have no evidence that the nitronate anion is generated under the optimized conditions. However, we believe that the nitronate anion from MeNO2 (pK a = 10.2) is generated, because the imidate anion generated from BSA or BSTFA and KOAc can deprotonate dimethyl malonate (pK a = 13).
- 21b For a review on the use of BSA in organic synthesis, see: El Gihani MT, Heaney H. Synthesis 1998; 357
For reviews on the catalytic asymmetric Henry reaction, see:
Some selected examples: