Fortschr Neurol Psychiatr 2012; 80(12): 711-719
DOI: 10.1055/s-0032-1325604
Kasuistik
© Georg Thieme Verlag KG Stuttgart · New York

ALS und frontotemporale Demenz – Fallbericht und Literaturübersicht

ALS and Frontotemporal Dementia –
Case Report and Review of the Literature
R. D. Nass
1   Klinik für Epileptologie, Universitätsklinik Bonn
,
I. G. Meister
2   Klinik und Poliklinik für Neurologie, Uniklinik Köln
,
W. F. Haupt
2   Klinik und Poliklinik für Neurologie, Uniklinik Köln
,
G. R. Fink
2   Klinik und Poliklinik für Neurologie, Uniklinik Köln
› Author Affiliations
Further Information

Publication History

Publication Date:
10 December 2012 (online)

Zusammenfassung

Das Auftreten kognitiver Einschränkungen bei der amyotrophen Lateralsklerose (ALS), vor allem in Form einer frontotemporalen Demenz (FTD), ist seit längerer Zeit bekannt. Molekularbiologische und histopathologische Erkenntnisse der letzten Jahre ergeben Hinweise darauf, dass ALS und FTD gemeinsame pathologische Mechanismen haben und verschiedene Phänotypen derselben Proteinopathie darstellen könnten. Der zugrunde liegende Pathomechanismus könnte eine fehlerhafte RNA- und DNA-Modulation sein, vermittelt unter anderem durch die Proteine TDP43 und FUS. Diese Ergebnisse haben zur Beschreibung der neuen Kategorie der TDP43-Proteinopathien geführt, zu welcher neben der ALS und der FTD auch kombinierte Krankheitsbilder zählen. Während knapp die Hälfte der FTD-Fälle mit TDP43-Ablagerungen assoziiert ist, finden sich bei der anderen Hälfte Tau-Ablagerungen. Auch hier bestehen klinische Überlappungen zu anderen Tauopathien, z. B. dem corticobasalen Syndrom. Ausgehend von einem Fallbeispiel geben wir einen Überblick über das klinische Spektrum und die aktuellen pathogenetischen Konzepte der FTD.

Abstract

The occurrence of cognitive decline in amyotrophic lateral sclerosis (ALS), especially in the form of frontotemporal dementia (FTD), has been described previously. Recent molecular biology and histopathology data suggest that both ALS and FTD may share common pathological pathways and may present two phenotypes of the same proteinopathy. The underlying pathophysiological mechanism may be defective RNA- and DNA-modulation, mediated by the proteins TDP43 and FUS. These findings are suggestive of a new disease category of TDP43-proteinopathies, which include ALS, FTD and overlap syndromes. While about half of the FTD cases are associated with TDP43-deposits, tau is found in the other half. A significant clinical overlap to other tauopathies exists here as well, for instance with corticobasal degeneration. In this paper, we present a case report and review the clinical spectrum and current pathogenetic concepts of FTD.

 
  • Literatur

  • 1 Cairns NJ, Bigio EH, Mackenzie IR et al. Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta neuropathologica 2007; 114 (01) 5-22
  • 2 Rascovsky K, Hodges JR, Knopman D et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain: a journal of neurology 2011; 134 (09) 2456-2477
  • 3 Gorno-Tempini ML, Hillis AE, Weintraub S et al. Classification of primary progressive aphasia and its variants. Neurology 2011; 76 (11) 1006-1014
  • 4 Rabinovici GD, Miller BL. Frontotemporal lobar degeneration: epidemiology, pathophysiology, diagnosis and management. CNS drugs 2010; 24 (05) 375-398
  • 5 Diehl-Schmid J, Neumann M, Laws SM et al. Frontotemporale Lobärdegeneration. Teil 2: Bildgebung, Neuropathologie und Genetik. Fortschr Neurol Psychiat 2009; 77 (05) 295-304
  • 6 Otto M, Ludolph AC, Landwehrmeyer B et al. Deutsches Konsortium zur Erforschung der frontotemporalen Lobärdegeneration. Der Nervenarzt 2011; 82 (08) 1002-1005
  • 7 Yener GG, Rosen HJ, Papatriantafyllou J. Frontotemporal Degeneration. Continuum: Lifelong Learning. Neurology 2010; 16 (02) 191-211
  • 8 Snowden JS, Thompson JC, Stopford CL et al. The clinical diagnosis of early-onset dementias: diagnostic accuracy and clinicopathological relationships. Brain: a journal of neurology 2011; 134 (09) 2478-2492
  • 9 Kim EJ, Sidhu M, Gaus SE et al. Selective Frontoinsular von Economo Neuron and Fork Cell Loss in Early Behavioral Variant Frontotemporal Dementia. Cerebral cortex 2011; 22 (02) 251-259
  • 10 Prudlo J. TDP-43 Proteinopathien: ALS und frontotemporale Demenzen. Fortschr Neurol Psychiat 2009; 77 (Suppl. 01) S25-S27
  • 11 Geser F, Martinez-Lage M, Kwong LK et al. Amyotrophic lateral sclerosis, frontotemporal dementia and beyond: the TDP-43 diseases. Journal of neurology 2009; 256 (08) 1205-1214
  • 12 Neumann M, Sampathu DM, Kwong LK et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006; 314 (5796) 130-133
  • 13 Danek A, Diehl-Schmid J, Grimmer T et al. Frontotemporale Lobärdegeneration. Teil 1: Diagnose und Therapie. Fortschr Neurol Psychiat 2009; 77 (03) 169-176 ; quiz 177–179.
  • 14 Lenz B, Sidiropoulos C, Bleich S et al. Frontotemporale Demenz: Neurotransmitter und klinische Symptomatik im Fokus therapeutischer Überlegungen. Fortschr Neurol Psychiat 2009; 77 (05) 289-294
  • 15 Hirano A, Kurland LT, Krooth RS et al. Parkinsonism-dementia complex, an endemic disease on the island of Guam. I. Clinical features. Brain: a journal of neurology 1961; 84: 642-661
  • 16 v. Braunmühl A. Picksche Krankheit und amyotrophische Lateralsklerose. Allgemeine Z Psychiatr Psychol Med 1932; 96: 364-366
  • 17 Phukan J, Elamin M, Bede P et al. The syndrome of cognitive impairment in amyotrophic lateral sclerosis: a population-based study. Journal of neurology, neurosurgery, and psychiatry 2012; 83: 102-108
  • 18 Phukan J, Pender NP, Hardiman O. Cognitive impairment in amyotrophic lateral sclerosis. Lancet neurology 2007; 6 (11) 994-1003
  • 19 Ringholz GM, Appel SH, Bradshaw M et al. Prevalence and patterns of cognitive impairment in sporadic ALS. Neurology 2005; 65 (04) 586-590
  • 20 Schreiber H, Gaigalat T, Wiedemuth-Catrinescu U et al. Cognitive function in bulbar- and spinal-onset amyotrophic lateral sclerosis. A longitudinal study in 52 patients. Journal of neurology 2005; 252 (07) 772-781
  • 21 Rusina R, Ridzon P, Kulist’ak P et al. Relationship between ALS and the degree of cognitive impairment, markers of neurodegeneration and predictors for poor outcome. A prospective study. European journal of neurology: the official journal of the European Federation of Neurological Societies 2010; 17 (01) 23-30
  • 22 Gustafson L. Frontal lobe degeneration of non-Alzheimer type. II. Clinical picture and differential diagnosis. Archives of gerontology and geriatrics 1987; 6 (03) 209-223
  • 23 de Carvalho M, Dengler R, Eisen A et al. Electrodiagnostic criteria for diagnosis of ALS. Clinical neurophysiology: official journal of the International Federation of Clinical Neurophysiology 2008; 119 (03) 497-503
  • 24 Mackenzie IR, Bigio EH, Ince P et al. Pathological TDP-43 distinguishes sporadic amyotrophic lateral sclerosis from amyotrophic lateral sclerosis with SOD1 mutations. Annals of neurology 2007; G61 (05) 427-434
  • 25 Forman MS, Farmer J, Johnson JK et al. Frontotemporal dementia: clinicopathological correlations. Annals of neurology 2006; 59 (06) 952-962
  • 26 Rohrer JD, Lashley T, Schott JM et al. Clinical and neuroanatomical signatures of tissue pathology in frontotemporal lobar degeneration. Brain: a journal of neurology 2011; 134 (09) 2565-2581
  • 27 Kwiatkowski Jr TJ, Bosco DA, Leclerc AL et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 2009; 323 (5918) 1205-1208
  • 28 Vance C, Rogelj B, Hortobagyi T et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 2009; 323 (5918) 1208-1211
  • 29 Munoz DG, Neumann M, Kusaka H et al. FUS pathology in basophilic inclusion body disease. Acta neuropathologica 2009; 118 (05) 617-627
  • 30 Mackenzie IR, Rademakers R, Neumann M. TDP-43 and FUS in amyotrophic lateral sclerosis and frontotemporal dementia. Lancet neurology 2010; 9 (10) 995-1007
  • 31 Sephton CF, Cenik C, Kucukural A et al. Identification of neuronal RNA targets of TDP-43-containing ribonucleoprotein complexes. The Journal of biological chemistry 2011; 286 (02) 1204-1215
  • 32 Arai TMI, Hasegawa M, Nonoka T et al. Phosphorylated TDP-43 in Alzheimer’s disease and dementia with Lewy bodies. Acta Neuropathol 2009; 117 (02) 125-136
  • 33 Mackenzie IR, Rademakers R. The role of transactive response DNA-binding protein-43 in amyotrophic lateral sclerosis and frontotemporal dementia. Current opinion in neurology 2008; 21 (06) 693-700
  • 34 Ticozzi N, Tiloca C, Morelli C et al. Genetics of familial Amyotrophic lateral sclerosis. Archives italiennes de biologie 2011; 149 (01) 65-82
  • 35 Tsai CP, Soong BW, Lin KP et al. FUS, TARDBP, and SOD1 mutations in a Taiwanese cohort with familial ALS. Neurobiology of aging 2011; 32 (03) 553 e13-553 e21
  • 36 Seelaar H, Kamphorst W, Rosso SM et al. Distinct genetic forms of frontotemporal dementia. Neurology 2008; 71 (16) 1220-1226
  • 37 Kuhnlein P, Sperfeld AD, Vanmassenhove B et al. Two German kindreds with familial amyotrophic lateral sclerosis due to TARDBP mutations. Archives of neurology 2008; 65 (09) 1185-1189
  • 38 Aswathy PM, Jairani PS, Mathuranath PS. Genetics of frontotemporal lobar degeneration. Annals of Indian Academy of Neurology 2010; 13 (Suppl. 02) S55-S62
  • 39 Watts GD, Wymer J, Kovach MJ et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nature genetics 2004; 36 (04) 377-381
  • 40 Dejesus-Hernandez M, Mackenzie IR, Boeve BF et al. Expanded GGGGCC Hexanucleotide Repeat in Noncoding Region of C9ORF72 Causes Chromosome 9p-Linked FTD and ALS. Neuron 2011; 72 (02) 245-256
  • 41 Renton AE, Majounie E, Waite A et al. A Hexanucleotide Repeat Expansion in C9ORF72 Is the Cause of Chromosome 9p21-Linked ALS-FTD. Neuron 2011; 72 (02) 257-268
  • 42 Parkinson N, Ince PG, Smith MO et al. ALS phenotypes with mutations in CHMP2B (charged multivesicular body protein 2B). Neurology 2006; 67 (06) 1074-1077
  • 43 Skibinski G, Parkinson NJ, Brown JM et al. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nature genetics 2005; 37 (08) 806-808
  • 44 Al-Saif A, Al-Mohanna F, Bohlega S. A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Annals of neurology 2011; 70 (06) 913-919
  • 45 Luty AA, Kwok JB, Dobson-Stone C et al. Sigma nonopioid intracellular receptor 1 mutations cause frontotemporal lobar degeneration-motor neuron disease. Annals of neurology 2010; 68 (05) 639-649
  • 46 Deng HX, Chen W, Hong ST et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 2011; 477 (7363) 211-215
  • 47 Deuschl G, Maier W. S3-Leitlinie „Demenzen“, Langversion. In: Diagnose- und Behandlungsleitlinie Demenz (Interdisziplinäre S3-Praxisleitlinien). Berlin, Heidelberg: Springer; 2010: 9-72
  • 48 Ettlin TM, Kischka U, Beckson M et al. The Frontal Lobe Score: part I: construction of a mental status of frontal systems. Clinical rehabilitation 2000; 14 (03) 260-271
  • 49 Kertesz A, Davidson W, Fox H. Frontal behavioral inventory: diagnostic criteria for frontal lobe dementia. The Canadian journal of neurological sciences. Le journal canadien des sciences neurologiques 1997; 24 (01) 29-36
  • 50 Mioshi E, Hsieh S, Savage S et al. Clinical staging and disease progression in frontotemporal dementia. Neurology 2010; 74 (20) 1591-1597
  • 51 Bibl M, Mollenhauer B, Lewczuk P et al. Cerebrospinal fluid tau, p-tau 181 and amyloid-beta38/40/42 in frontotemporal dementias and primary progressive aphasias. Dementia and geriatric cognitive disorders 2011; 31 (01) 37-44
  • 52 Hu WT, Chen-Plotkin A, Grossman M et al. Novel CSF biomarkers for frontotemporal lobar degenerations. Neurology 2010; 75 (23) 2079-2086
  • 53 Noto Y, Shibuya K, Sato Y et al. Elevated CSF TDP-43 levels in amyotrophic lateral sclerosis: specificity, sensitivity, and a possible prognostic value. Amyotrophic lateral sclerosis: official publication of the World Federation of Neurology Research Group on Motor Neuron Diseases 2011; 12 (02) 140-143
  • 54 Steinacker P, Hendrich C, Sperfeld AD et al. TDP-43 in cerebrospinal fluid of patients with frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Archives of neurology 2008; 65 (11) 1481-1487
  • 55 Bian H, Van Swieten JC, Leight S et al. CSF biomarkers in frontotemporal lobar degeneration with known pathology. Neurology 2008; 70 (19) 1827-1835
  • 56 Lindau M, Jelic V, Johansson SE et al. Quantitative EEG abnormalities and cognitive dysfunctions in frontotemporal dementia and Alzheimer’s disease. Dementia and geriatric cognitive disorders 2003; 15 (02) 106-114
  • 57 Caso F, Cursi M, Magnani G et al. Quantitative EEG and LORETA: valuable tools in discerning FTD from AD?. Neurobiology of aging 2012; 33 (10) 2343-2356
  • 58 Ludoph PN. Amyotrophe Lateralsklerose. In: Diener HC, (Hrsg) Leitlinien für Diagnostik und Therapie in der Neurologie. Stuttgart: Georg Thieme Verlag KG; 2008: 205-212
  • 59 Miller RG, Jackson CE, Kasarskis EJ et al. Practice parameter update: The care of the patient with amyotrophic lateral sclerosis: multidisciplinary care, symptom management, and cognitive/behavioral impairment (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2009; 73 (15) 1227-1233
  • 60 Diehl-Schmid J, Forstl H, Perneczky R et al. A 6-month, open-label study of memantine in patients with frontotemporal dementia. International journal of geriatric psychiatry 2008; 23 (07) 754-759
  • 61 Kessler H, Supprian T, Falkai P. Pharmakologische Behandlungsansätze bei der frontotemporalen Demenz. Fortschr Neurol Psychiat 2007; 75 (12) 714-719
  • 62 Danek A, Diehl-Schmid J, Grimmer T et al. Frontotemporale Lobärdegenerationen. Teil 1: Diagnose und Therapie. Fortschritte der Neurologie-Psychiatrie 2009; 77 (03) 169-176 ; quiz 177–179