Klin Monbl Augenheilkd 2013; 230(4): 358-362
DOI: 10.1055/s-0032-1328361
Studie
Georg Thieme Verlag KG Stuttgart · New York

Analyse der Venenbewegungen in der Netzhaut von Glaukompatienten

Analysis of Retinal Vein Motion in Glaucoma Patients
M. Ghanem
Augenklinik des Universitätsspitals Basel
,
K. Gugleta
Augenklinik des Universitätsspitals Basel
,
A. Oettli
Augenklinik des Universitätsspitals Basel
,
A. Kochkorov
Augenklinik des Universitätsspitals Basel
,
A. Polunina
Augenklinik des Universitätsspitals Basel
,
J. Flammer
Augenklinik des Universitätsspitals Basel
,
S. Orgül
Augenklinik des Universitätsspitals Basel
› Author Affiliations
Further Information

Publication History

eingereicht 16 September 2012

akzeptiert 06 January 2013

Publication Date:
29 April 2013 (online)

Zusammenfassung

Hintergrund: Analyse der Pulsamplitude der Netzhautvenen bei Glaukompatienten.

Patienten und Methoden: Bewegungen der 2 (in der Nähe und entfernt von der Papille) inferotemporalen Venensegmente von je 500 Mikrometer Länge wurden mittels des Retinal Vessel Analyzers während 30 Sekunden aufgenommen. Eine selbst entwickelte Software wurde eingesetzt, um das zeitliche Verhalten des Venendurchmessers zu erforschen. Eine durchschnittliche Wellenform wurde aufgrund der Fourier-Analyse bestimmt. Der Unterschied zwischen dem höchsten und tiefsten Durchmesser wurde bei 25 Glaukomaugen mit 25 Kontrollprobanden verglichen.

Ergebnisse: Die Pulsamplitude bei gesunden Probanden war höher als in Glaukomaugen: in der Papillennähe betrug sie, relativ zur Baseline, jeweils 2,6 ± 2,1 % und 1,4 ± 0,8 % (t-Test, p = 0,009). Weiter von der Papille waren die Werte jeweils 1,7 ± 1,0 % und 1,1 ± 0,5 % (p = 0,01)

Schlussfolgerungen: Netzhautvenen in Glaukompatienten weisen verminderte Pulsamplituden im Vergleich zu gesunden Kontrollaugen auf; ein Hinweis für den gestörten Venenabfluss und erhöhten intraluminalen Druck.

Abstract

Background: Analysis of retinal vein amplitude in eyes of glaucoma patients.

Patients and Methods: Motion of retinal veins was captured by Retinal Vessel Analyzer in duration of 30 seconds. Inferotemporal vein segments of 500 micrometers length in the immediate vicinity of, as well as away from the optic disc were chosen. Time behavior of the average segment diameter was analyzed by the self made software: dominating frequency (heart rate) was determined by Fourier analysis, and based on this an average pulse form was produced. Difference between the highest and lowest diameter point was the subject of analysis in 25 eyes of 25 glaucoma patients and 25 age–sex-matched healthy controls.

Results: Pulse amplitude of retinal veins in healthy eyes was higher than in glaucoma patients: in the optic disc vicinity the pulse amplitude relative to baseline was 2.6 ± 2.1 % in control eyes and 1.4 ± 0.8 % in glaucoma eyes (t-test, p = 0.009). Away from the disc, it was 1.7 ± 1.0 % and 1.1 ± 0.5 % respectively (p = 0.01).

Conclusions: Retinal veins in glaucoma eyes demonstrate lower pulse amplitudes than healthy eyes, indicating disturbance in venous outflow and increased intraluminal venous pressure.

 
  • Referenzen

  • 1 Chen HC, Patel V, Wiek J et al. Vessel diameter changes during the cardiac cycle. Eye 1994; 8: 97-103
  • 2 Kochkorov A, Gugleta K, Zawinka C et al. Short-term retinal vessel diameter variability in relation to the history of cold extremities. Invest Ophthalmol Vis Sci 2006; 47: 4026-4033
  • 3 Morgan WH, Lind CR, Kain S et al. Retinal vein pulsation is in phase with intracranial pressure and not intraocular pressure. Invest Ophthalmol Vis Sci 2012; 53: 4676-4681
  • 4 Michelson G, Grundler A, Steinmeier R et al. Simultaneous measurement of ocular micro- and macrocirculation, intraocular pressure, and systemic functions. Ger J Ophthalmol 1994; 3: 48-53
  • 5 Michelson G, Harazny J. Relationship between ocular pulse pressures and retinal vessel velocities. Ophthalmology 1997; 104: 664-671
  • 6 Abegao Pinto L, Vandewalle E, De Clerck E et al. Lack of spontaneous venous pulsation: possible risk indicator in normal tension glaucoma?. Acta Ophthalmol 2012;
  • 7 Flammer J, Orgul S, Costa VP et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res 2002; 21: 359-393
  • 8 Oettli A, Gugleta K, Kochkorov A et al. Rigidity of retinal vessel in untreated eyes of normal tension primary open-angle glaucoma patients. J Glaucoma 2011; 20: 303-306
  • 9 Gugleta K, Kochkorov A, Katamay R et al. On pulse-wave propagation in the ocular circulation. Invest Ophthalmol Vis Sci 2006; 47: 4019-4025
  • 10 Kochkorov A, Gugleta K, Kavroulaki D et al. Rigidity of retinal vessels in patients with multiple sclerosis. Klin Monatsbl Augenheilkd 2009; 226: 276-279
  • 11 Jacks AS, Miller NR. Spontaneous retinal venous pulsation: aetiology and significance. J Neurol Neurosurg Psychiatry 2003; 74: 7-9
  • 12 European Glaucoma Society EGS. Perimetry. Terminology and guidelines for glaucoma. Savona: Dogma; 2008: 82-87
  • 13 Wimpissinger B, Resch H, Berisha F et al. Response of retinal blood flow to systemic hyperoxia in smokers and nonsmokers. Graefes Arch Clin Exp Ophthalmol 2005; 243: 646-652
  • 14 Seifertl BU, Vilser W. Retinal Vessel Analyzer (RVA)–design and function. Biomed Tech (Berl) 2002; 47 (Suppl. 01) 678-681
  • 15 Vilser W, Nagel E, Lanzl I. Retinal vessel analysis–new possibilities. Biomed Tech (Berl) 2002; 47 (Suppl. 01) 682-685
  • 16 Garhofer G, Bek T, Boehm AG et al. Use of the retinal vessel analyzer in ocular blood flow research. Acta Ophthalmol 2010; 88: 717-722
  • 17 Gugleta K, Zawinka C, Rickenbacher I et al. Analysis of retinal vasodilation after flicker light stimulation in relation to vasospastic propensity. Invest Ophthalmol Vis Sci 2006; 47: 4034-4041
  • 18 Gugleta K, Kochkorov A, Waldmann N et al. Dynamics of retinal vessel response to flicker light in glaucoma patients and ocular hypertensives. Graefeʼs Arch Clin Exp Ophthalmol 2012; 250: 589-594
  • 19 Osusky R, Schoetzau A, Flammer J. Variations in the blood flow of the human optic nerve head. Eur J Ophthalmol 1997; 7: 364-369
  • 20 Buerk DG, Riva CE. Vasomotion and spontaneous low-frequency oscillations in blood flow and nitric oxide in cat optic nerve head. Microvasc Res 1998; 55: 103-112
  • 21 Bynke HG, Schele B. On the origin of the ocular pressure pulse. Ophthalmologica 1967; 153: 29-36
  • 22 Nichols WW. Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am J Hypertens 2005; 18: 3S-10S
  • 23 Et-Taouil K, Safar M, Plante GE. Mechanisms and consequences of large artery rigidity. Can J Physiol Pharmacol 2003; 81: 205-211
  • 24 Levine DN. Spontaneous pulsation of the retinal veins. Microvasc Res 1998; 56: 154-165
  • 25 Kain S, Morgan WH, Yu DY. New observations concerning the nature of central retinal vein pulsation. Br J Ophthalmol 2010; 94: 854-857
  • 26 Dastiridou AI, Ginis HS, De Brouwere D et al. Ocular rigidity, ocular pulse amplitude, and pulsatile ocular blood flow: the effect of intraocular pressure. Invest Ophthalmol Vis Sci 2009; 50: 5718-5722
  • 27 Silver DM, Farrell RA, Langham ME et al. Estimation of pulsatile ocular blood flow from intraocular pressure. Acta Ophthalmol Suppl 1989; 191: 25-29