Semin Reprod Med 2013; 31(01): 049-055
DOI: 10.1055/s-0032-1331797
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Embryonic Stem Cells from Blastomeres Maintaining Embryo Viability

Irina Klimanskaya
1   Advanced Cell Technology, Inc., Marlborough, Massachusetts
› Author Affiliations
Further Information

Publication History

Publication Date:
17 January 2013 (online)

Abstract

A wide variety of cell and tissue types that are sought in regenerative medicine can be generated from embryonic stem cells (ESCs), and currently two derivatives of human embryonic stem cells (hESCs) have entered human clinical trials. However, the ethical controversy surrounding this technology, which uses preimplantation human embryos to generate cell lines, is limiting research and the development of new therapies. Several new technologies such as induced pluripotent cells or parthenogenetically derived pluripotent cells hold great promise, but more research is needed before their derivatives can be proven to be safe and functional for use in human patients. The blastomere biopsy-based technique allows the derivation of human ESClines without sacrificing a human embryo and was shown to be robust and produce safe and functional derivatives of therapeutic value.

 
  • References

  • 1 Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292 (5819) 154-156
  • 2 Thomson JA, Itskovitz-Eldor J, Shapiro SS , et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282 (5391) 1145-1147
  • 3 Carpenter MK, Rosler E, Rao MS. Characterization and differentiation of human embryonic stem cells. Cloning Stem Cells 2003; 5 (1) 79-88
  • 4 Lanza R , et al , eds. Handbook of Stem Cells. San Diego, CA: Elsevier/Academic Press; 2004. . Embryonic Stem Cells, vol 1
  • 5 Hoffman LM, Carpenter MK. Characterization and culture of human embryonic stem cells. Nat Biotechnol 2005; 23 (6) 699-708
  • 6 Smith AG. Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 2001; 17: 435-462
  • 7 Passier R, Denning C, Mummery C. Cardiomyocytes from human embryonic stem cells. Handbook Exp Pharmacol 2006; (174) 101-122
  • 8 Ben-Hur T. Human embryonic stem cells for neuronal repair. Isr Med Assoc J 2006; 8 (2) 122-126 Review
  • 9 Klimanskaya I, Hipp J, Rezai KA, West M, Atala A, Lanza R. Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics. Cloning Stem Cells 2004; 6 (3) 217-245
  • 10 Klimanskaya I, Rosenthal N, Lanza R. Derive and conquer: sourcing and differentiating stem cells for therapeutic applications. Nat Rev Drug Discov 2008; 7 (2) 131-142
  • 11 Kroon E, Martinson LA, Kadoya K , et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 2008; 26 (4) 443-452
  • 12 Schwartz SD, Hubschman JP, Heilwell G , et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet 2012; 379 (9817) 713-720
  • 13 Hug K. Sources of human embryos for stem cell research: ethical problems and their possible solutions. Medicina (Kaunas) 2005; 41 (12) 1002-1010
  • 14 Hug K. Therapeutic perspectives of human embryonic stem cell research versus the moral status of a human embryo—does one have to be compromised for the other?. Medicina (Kaunas) 2006; 42 (2) 107-114
  • 15 Evans M. Ethical sourcing of human embryonic stem cells—rational solutions?. Nat Rev Mol Cell Biol 2005; 6 (8) 663-667
  • 16 Lanza RP, Cibelli JB, West MD, Dorff E, Tauer C, Green RM. The ethical reasons for stem cell research. Science 2001; 292 (5520) 1299
  • 17 McLaren A. A scientist's view of the ethics of human embryonic stem cell research. Cell Stem Cell 2007; 1 (1) 23-26
  • 18 Winston RM. Does government regulation inhibit embryonic stem cell research and can it be effective?. Cell Stem Cell 2007; 1 (1) 27-34
  • 19 Denker HW. Human embryonic stem cells: the real challenge for research as well as for bioethics is still ahead of us. Cells Tissues Organs 2008; 187 (4) 250-256
  • 20 Intemann KK, de Melo-Martín I. Regulating scientific research: should scientists be left alone?. FASEB J 2008; 22 (3) 654-658
  • 21 The President's Council on Bioethics. White Paper: Alternative Sources of Human Pluripotent Stem Cells. Washington, DC: National Academic Press; 2005
  • 22 Hyun I. The bioethics of stem cell research and therapy. J Clin Invest 2010; 120 (1) 71-75
  • 23 Tweedell KS. New paths to pluripotent stem cells. Curr Stem Cell Res Ther 2008; 3 (3) 151-162 Review
  • 24 Cibelli JB, Grant KA, Chapman KB , et al. Parthenogenetic stem cells in nonhuman primates. Science 2002; 295 (5556) 819
  • 25 De Sousa PA, Wilmut I. Human parthenogenetic embryo stem cells: appreciating what you have when you have it. Cell Stem Cell 2007; 1 (3) 243-244
  • 26 Dighe V, Clepper L, Pedersen D , et al. Heterozygous embryonic stem cell lines derived from nonhuman primate parthenotes. Stem Cells 2008; 26 (3) 756-766
  • 27 Mai Q, Yu Y, Li T , et al. Derivation of human embryonic stem cell lines from parthenogenetic blastocysts. Cell Res 2007; 17 (12) 1008-1019
  • 28 Lin G, OuYang Q, Zhou X , et al. A highly homozygous and parthenogenetic human embryonic stem cell line derived from a one-pronuclear oocyte following in vitro fertilization procedure. Cell Res 2007; 17 (12) 999-1007
  • 29 Revazova ES, Turovets NA, Kochetkova OD , et al. HLA homozygous stem cell lines derived from human parthenogenetic blastocysts. Cloning Stem Cells 2008; 10 (1) 11-24
  • 30 Brevini TA, Gandolfi F. Parthenotes as a source of embryonic stem cells. Cell Prolif 2008; 41 (Suppl. 01) 20-30
  • 31 Sung LY, Chang CC, Amano T , et al. Efficient derivation of embryonic stem cells from nuclear transfer and parthenogenetic embryos derived from cryopreserved oocytes. Cell Reprogram 2010; 12 (2) 203-211
  • 32 Turovets N, D'Amour KA, Agapov V , et al. Human parthenogenetic stem cells produce enriched populations of definitive endoderm cells after trichostatin A pretreatment. Differentiation 2011; 81 (5) 292-298
  • 33 Isaev DA, Garitaonandia I, Abramihina TV , et al. In vitro differentiation of human parthenogenetic stem cells into neural lineages. Regen Med 2012; 7 (1) 37-45
  • 34 Taranger CK, Noer A, Sørensen AL, Håkelien AM, Boquest AC, Collas P. Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol Biol Cell 2005; 16 (12) 5719-5735
  • 35 Håkelien AM, Gaustad KG, Taranger CK, Skålhegg BS, Küntziger T, Collas P. Long-term in vitro, cell-type-specific genome-wide reprogramming of gene expression. Exp Cell Res 2005; 309 (1) 32-47
  • 36 Do JT, Schöler HR. Nuclei of embryonic stem cells reprogram somatic cells. Stem Cells 2004; 22 (6) 941-949
  • 37 Tada M, Tada T, Lefebvre L, Barton SC, Surani MA. Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J 1997; 16 (21) 6510-6520
  • 38 Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 2001; 11 (19) 1553-1558
  • 39 Strelchenko N, Kukharenko V, Shkumatov A, Verlinsky O, Kuliev A, Verlinsky Y. Reprogramming of human somatic cells by embryonic stem cell cytoplast. Reprod Biomed Online 2006; 12 (1) 107-111
  • 40 Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126 (4) 663-676
  • 41 Takahashi K, Tanabe K, Ohnuki M , et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131 (5) 861-872
  • 42 Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature 2007; 448 (7151) 313-317
  • 43 Lewitzky M, Yamanaka S. Reprogramming somatic cells towards pluripotency by defined factors. Curr Opin Biotechnol 2007; 18 (5) 467-473 Review
  • 44 Hanna J, Wernig M, Markoulaki S , et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 2007; 318 (5858) 1920-1923
  • 45 Yu J, Vodyanik MA, Smuga-Otto K , et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318 (5858) 1917-1920
  • 46 Meissner A, Wernig M, Jaenisch R. Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 2007; 25 (10) 1177-1181
  • 47 Jaenisch R, Young R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 2008; 132 (4) 567-582
  • 48 Stadtfeld M, Brennand K, Hochedlinger K. Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Curr Biol 2008; 18 (12) 890-894
  • 49 Hanna J, Markoulaki S, Schorderet P , et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 2008; 133 (2) 250-264
  • 50 Park IH, Zhao R, West JA , et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 2008; 451 (7175) 141-146
  • 51 Park IH, Zhao R, West JA , et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 2008; 451 (7175) 141-146
  • 52 Lowry WE, Richter L, Yachechko R , et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci U S A 2008; 105 (8) 2883-2888
  • 53 Brambrink T, Foreman R, Welstead GG , et al. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell 2008; 2 (2) 151-159
  • 54 Stadtfeld M, Maherali N, Breault DT, Hochedlinger K. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2008; 2 (3) 230-240
  • 55 Wernig M, Zhao JP, Pruszak J , et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proc Natl Acad Sci U S A 2008; 105 (15) 5856-5861
  • 56 Schenke-Layland K, Rhodes KE, Angelis E , et al. Reprogrammed mouse fibroblasts differentiate into cells of the cardiovascular and hematopoietic lineages. Stem Cells 2008; 26 (6) 1537-1546
  • 57 Yu J, Vodyanik MA, Smuga-Otto K , et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007; 318 (5858) 1917-1920
  • 58 Shi Y, Do JT, Desponts C, Hahm HS, Schöler HR, Ding S. A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2008; 2 (6) 525-528
  • 59 Duinsbergen D, Salvatori D, Eriksson M, Mikkers H. Tumors originating from induced pluripotent stem cells and methods for their prevention. Ann N Y Acad Sci 2009; 1176: 197-204
  • 60 Miura K, Okada Y, Aoi T , et al. Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol 2009; 27 (8) 743-745
  • 61 Nakagawa M, Koyanagi M, Tanabe K , et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 2008; 26 (1) 101-106
  • 62 Meng X, Neises A, Su RJ , et al. Efficient reprogramming of human cord blood CD34+ cells into induced pluripotent stem cells with OCT4 and SOX2 alone. Mol Ther 2012; 20 (2) 408-416
  • 63 Liu T, Zou G, Gao Y , et al. High efficiency of reprogramming CD34+ cells derived from human amniotic fluid into induced pluripotent stem cells with Oct4. Stem Cells Dev 2012; 21 (12) 2322-2332
  • 64 Zhao HX, Li Y, Jin HF , et al. Rapid and efficient reprogramming of human amnion-derived cells into pluripotency by three factors OCT4/SOX2/NANOG. Differentiation 2010; 80 (2–3) 123-129
  • 65 Tsai SY, Clavel C, Kim S , et al. Oct4 and klf4 reprogram dermal papilla cells into induced pluripotent stem cells. Stem Cells 2010; 28 (2) 221-228
  • 66 Wei Z, Yang Y, Zhang P , et al. Klf4 interacts directly with Oct4 and Sox2 to promote reprogramming. Stem Cells 2009; 27 (12) 2969-2978
  • 67 Kim JB, Greber B, Araúzo-Bravo MJ , et al. Direct reprogramming of human neural stem cells by OCT4. Nature 2009; 461 (7264) 649-3
  • 68 Miyazaki S, Yamamoto H, Miyoshi N, Takahashi H, Suzuki Y, Haraguchi N, Ishii H, Doki Y, Mori M. Emerging methods for preparing iPS cells. Jpn J Clin Oncol 2012; 42 (9) 773-779
  • 69 Yu J, Hu K, Smuga-Otto K , et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 2009; 324 (5928) 797-801
  • 70 Woltjen K, Michael IP, Mohseni P , et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 2009; 458 (7239) 766-770
  • 71 Rhee YH, Ko JY, Chang MY , et al. Protein-based human iPS cells efficiently generate functional dopamine neurons and can treat a rat model of Parkinson disease. J Clin Invest 2011; 121 (6) 2326-2335
  • 72 Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 2009; 458 (7239) 771-775
  • 73 Hiratsuka M, Uno N, Ueda K , et al. Integration-free iPS cells engineered using human artificial chromosome vectors. PLoS ONE 2011; 6 (10) e25961
  • 74 Okita K, Matsumura Y, Sato Y , et al. A more efficient method to generate integration-free human iPS cells. Nat Methods 2011; 8 (5) 409-412
  • 75 Yu J, Chau KF, Vodyanik MA, Jiang J, Jiang Y. Efficient feeder-free episomal reprogramming with small molecules. PLoS ONE 2011; 6 (3) e17557
  • 76 Hu K, Yu J, Suknuntha K , et al. Efficient generation of transgene-free induced pluripotent stem cells from normal and neoplastic bone marrow and cord blood mononuclear cells. Blood 2011; 117 (14) e109-e119
  • 77 Yu J, Hu K, Smuga-Otto K , et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 2009; 324 (5928) 797-801
  • 78 Banito A, Rashid ST, Acosta JC , et al. Senescence impairs successful reprogramming to pluripotent stem cells. Genes Dev 2009; 23 (18) 2134-2139
  • 79 Feng Q, Lu SJ, Klimanskaya I , et al. Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence. Stem Cells 2010; 28 (4) 704-712
  • 80 Mayshar Y, Ben-David U, Lavon N , et al. Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 2010; 7 (4) 521-531
  • 81 Lister R, Pelizzola M, Kida YS , et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 2011; 471 (7336) 68-73
  • 82 Laurent LC, Ulitsky I, Slavin I , et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 2011; 8 (1) 106-118
  • 83 Gore A, Li Z, Fung HL , et al. Somatic coding mutations in human induced pluripotent stem cells. Nature 2011; 471 (7336) 63-67
  • 84 Chung Y, Klimanskaya I, Becker S , et al. Embryonic and extraembryonic stem cell lines derived from single mouse blastomeres. Nature 2006; 439 (7073) 216-219
  • 85 Klimanskaya I, Chung Y, Becker S, Lu SJ, Lanza R. Human embryonic stem cell lines derived from single blastomeres [published correction appears in Nature 2006;444(7118):512, and Nature 2007;446(7133):342]. Nature 2006; 444 (7118) 481-485
  • 86 Klimanskaya I, Chung Y, Becker S, Lu SJ, Lanza R. Derivation of human embryonic stem cells from single blastomeres. Nat Protoc 2007; 2 (8) 1963-1972
  • 87 Chung Y, Klimanskaya I, Becker S , et al. Human embryonic stem cell lines generated without embryo destruction. Cell Stem Cell 2008; 2 (2) 113-117
  • 88 Handyside AH, Kontogianni EH, Hardy K, Winston RM. Pregnancies from biopsied human preimplantation embryos sexed by Y-specific DNA amplification. Nature 1990; 344 (6268) 768-770
  • 89 Kelly SJ. Studies of the developmental potential of 4- and 8-cell stage mouse blastomeres. J Exp Zool 1977; 200 (3) 365-376
  • 90 Pedersen RA. Potency, lineage and allocation in preimplantation mouse embryos. In: Rossant J, Pedersen RA, , eds. Experimental Approaches to Mammalian Embryonic Development. New York, NY: Cambridge University Press; 1986: 3-33
  • 91 Piotrowska K, Wianny F, Pedersen RA, Zernicka-Goetz M. Blastomeres arising from the first cleavage division have distinguishable fates in normal mouse development. Development 2001; 128 (19) 3739-3748
  • 92 Piotrowska-Nitsche K, Zernicka-Goetz M. Spatial arrangement of individual 4-cell stage blastomeres and the order in which they are generated correlate with blastocyst pattern in the mouse embryo. Mech Dev 2005; 122 (4) 487-500
  • 93 Piotrowska-Nitsche K, Perea-Gomez A, Haraguchi S, Zernicka-Goetz M. Four-cell stage mouse blastomeres have different developmental properties. Development 2005; 132 (3) 479-490
  • 94 Lorthongpanich C, Yang SH, Piotrowska-Nitsche K, Parnpai R, Chan AW. Development of single mouse blastomeres into blastocysts, outgrowths and the establishment of embryonic stem cells. Reproduction 2008; 135 (6) 805-813
  • 95 Teramura T, Takehara T, Kishi N , et al. A mouse and embryonic stem cell derived from a single embryo. Cloning Stem Cells 2007; 9 (4) 485-494
  • 96 González S, Ibáñez E, Santaló J. Establishment of mouse embryonic stem cells from isolated blastomeres and whole embryos using three derivation methods. J Assist Reprod Genet 2010; 27 (12) 671-682
  • 97 Lorthongpanich C, Yang SH, Piotrowska-Nitsche K, Parnpai R, Chan AW. Development of single mouse blastomeres into blastocysts, outgrowths and the establishment of embryonic stem cells. Reproduction 2008; 135 (6) 805-813
  • 98 Wakayama S, Hikichi T, Suetsugu R , et al. Efficient establishment of mouse embryonic stem cell lines from single blastomeres and polar bodies. Stem Cells 2007; 25 (4) 986-993
  • 99 Fong CY, Richards M, Bongso A. Unsuccessful derivation of human embryonic stem cell lines from pairs of human blastomeres. Reprod Biomed Online 2006; 13 (2) 295-300
  • 100 Johnson MH, McConnell JM. Lineage allocation and cell polarity during mouse embryogenesis. Semin Cell Dev Biol 2004; 15 (5) 583-597
  • 101 Fleming TP, Papenbrock T, Fesenko I, Hausen P, Sheth B. Assembly of tight junctions during early vertebrate development. Semin Cell Dev Biol 2000; 11 (4) 291-299
  • 102 Rossant J. Lineage development and polar asymmetries in the peri-implantation mouse blastocyst. Semin Cell Dev Biol 2004; 15 (5) 573-581
  • 103 Johnson MH, Ziomek CA. The foundation of two distinct cell lineages within the mouse morula. Cell 1981; 24 (1) 71-80
  • 104 Krtolica A, Genbacev O, Escobedo C , et al. Disruption of apical-basal polarity of human embryonic stem cells enhances hematoendothelial differentiation. Stem Cells 2007; 25 (9) 2215-2223
  • 105 Cowan CA, Klimanskaya I, McMahon J , et al. Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med 2004; 350 (13) 1353-1356
  • 106 Klimanskaya I, McMahon J. Approaches for derivation and maintenance of human embryonic stem cells. Detailed procedures and alternatives. In: Lanza R, Hogan B, Melton D, Pedersen R, Thomson J, , eds. Essentials of Stem Cell Biology. Amsterdam, the Netherlands: Elsevier Science; 2005: 287-304
  • 107 Ilic D, Giritharan G, Zdravkovic T , et al. Derivation of human embryonic stem cell lines from biopsied blastomeres on human feeders with minimal exposure to xenomaterials. Stem Cells Dev 2009; 18 (9) 1343-1350
  • 108 Feki A, Bosman A, Dubuisson JB , et al. Derivation of the first Swiss human embryonic stem cell line from a single blastomere of an arrested four-cell stage embryo. Swiss Med Wkly 2008; 138 (37–38) 540-550
  • 109 Geens M, Mateizel I, Sermon K , et al. Human embryonic stem cell lines derived from single blastomeres of two 4-cell stage embryos. Hum Reprod 2009; 24 (11) 2709-2717
  • 110 Giritharan G, Ilic D, Gormley M, Krtolica A. Human embryonic stem cells derived from embryos at different stages of development share similar transcription profiles. PLoS ONE 2011; 6 (10) e26570
  • 111 Lu B, Malcuit C, Wang S , et al. Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells 2009; 27 (9) 2126-2135