Semin Thromb Hemost 2013; 39(04): 382-391
DOI: 10.1055/s-0033-1338127
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

The Apparent uPA/PAI-1 Paradox in Cancer: More than Meets the Eye

Hau C. Kwaan
1   Division of Hematology/Oncology, Northwestem University Feinberg School of Medicine, Chicago, Illinois
,
Andrew P. Mazar
2   Chemistry of Life Processes Institute and Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois
,
Brandon J. McMahon
1   Division of Hematology/Oncology, Northwestem University Feinberg School of Medicine, Chicago, Illinois
› Author Affiliations
Further Information

Publication History

Publication Date:
26 March 2013 (online)

Abstract

The expression of several components of the plasminogen–plasmin (P–P) system in tumor tissues has been shown to have prognostic significance in many human cancers, including those of the breast, prostate, lung, brain, ovary, stomach, colon, rectum, oral cavity, kidney, and bone. Mechanisms of action of the individual components have been extensively studied in tumor cells in vitro and in animal models. By interrupting various putative pathways involved in tumor progression in several experimental tumor models in animals, varying degrees of tumor control have been achieved. However, these efforts have thus far not been able to exert any impact in oncologic clinical practice. A possible explanation is our incomplete understanding of the complex involvement of the P–P system and its interactions with other tumorigenic factors. In this article, the role of various members of the P–P system in cancer is reviewed. Proteolysis via the urokinase-type plasminogen activator–plasminogen activation pathway tends to enhance tumor growth and invasion, and its natural inhibitor plasminogen activator inhibitor type 1 may also enhance tumor growth through the inhibition of apoptosis, enhancing cell proliferation and the promotion of angiogenesis. Meaningful drug designs for therapeutic intervention require a thorough understanding of the role of all of the components involved in this complex mechanism of tumor progression.

 
  • References

  • 1 Rijken DC, Lijnen HR. New insights into the molecular mechanisms of the fibrinolytic system. J Thromb Haemost 2009; 7 (1) 4-13
  • 2 Danø K, Behrendt N, Høyer-Hansen G , et al. Plasminogen activation and cancer. Thromb Haemost 2005; 93 (4) 676-681
  • 3 Kwaan HC, McMahon B. The role of plasminogen-plasmin system in cancer. Cancer Treat Res 2009; 148: 43-66
  • 4 Binder BR, Mihaly J. The plasminogen activator inhibitor “paradox” in cancer. Immunol Lett 2008; 118 (2) 116-124
  • 5 Heinemann V, Ebert M, Pinter T, Mala C, Neville N, Bevan P. Randomised Phase II trial with an uPA inhibitor (WX-671) in patients with locally advanced non-metastatic pancreatic cancer. European Society of Medical Oncology (ESMO). 2010; ; Abstract 712PD
  • 6 Goldstein LJ, Oliveria CT, Heinrich B , et al. A randomized double-blind phase II study of the combination of oral WX-671 plus capecitabine vs. capecitabinemonotherapy in first-line HER2- negative metastatic breast cancer (MBC). CTRC-AACR San Antonio Breast Cancer Symposium 2012; :5–20–01
  • 7 Kwaan HC, Keer HN, Radosevich JA, Cajot JF, Ernst R. Components of the plasminogen-plasmin system in human tumor cell lines. Semin Thromb Hemost 1991; 17 (3) 175-182
  • 8 Mondino A, Resnati M, Blasi F. Structure and function of the urokinase receptor. Thromb Haemost 1999; 82 (Suppl. 01) 19-22
  • 9 Chapman HA, Wei Y. Protease crosstalk with integrins: the urokinase receptor paradigm. Thromb Haemost 2001; 86 (1) 124-129
  • 10 Wei Y, Eble JA, Wang Z, Kreidberg JA, Chapman HA. Urokinase receptors promote beta1 integrin function through interactions with integrin alpha3beta1. Mol Biol Cell 2001; 12 (10) 2975-2986
  • 11 Czekay RP, Kuemmel TA, Orlando RA, Farquhar MG. Direct binding of occupied urokinase receptor (uPAR) to LDL receptor-related protein is required for endocytosis of uPAR and regulation of cell surface urokinase activity. Mol Biol Cell 2001; 12 (5) 1467-1479
  • 12 Tarui T, Andronicos N, Czekay RP , et al. Critical role of integrin alpha 5 beta 1 in urokinase (uPA)/urokinase receptor (uPAR, CD87) signaling. J Biol Chem 2003; 278 (32) 29863-29872
  • 13 Cortese K, Sahores M, Madsen CD, Tacchetti C, Blasi F. Clathrin and LRP-1-independent constitutive endocytosis and recycling of uPAR. PLoS ONE 2008; 3 (11) e3730
  • 14 Andreasen PA. PAI-1 - a potential therapeutic target in cancer. Curr Drug Targets 2007; 8 (9) 1030-1041
  • 15 Bajou K, Masson V, Gerard RD , et al. The plasminogen activator inhibitor PAI-1 controls in vivo tumor vascularization by interaction with proteases, not vitronectin. Implications for antiangiogenic strategies. J Cell Biol 2001; 152 (4) 777-784
  • 16 Blasi F, Carmeliet P. uPAR: a versatile signalling orchestrator. Nat Rev Mol Cell Biol 2002; 3 (12) 932-943
  • 17 Balsara RD, Ploplis VA. Plasminogen activator inhibitor-1: the double-edged sword in apoptosis. Thromb Haemost 2008; 100 (6) 1029-1036
  • 18 Bajou K, Peng H, Laug WE , et al. Plasminogen activator inhibitor-1 protects endothelial cells from FasL-mediated apoptosis. Cancer Cell 2008; 14 (4) 324-334
  • 19 Soff GA, Sanderowitz J, Gately S , et al. Expression of plasminogen activator inhibitor type 1 by human prostate carcinoma cells inhibits primary tumor growth, tumor-associated angiogenesis, and metastasis to lung and liver in an athymic mouse model. J Clin Invest 1995; 96 (6) 2593-2600
  • 20 Cajot JF, Bamat J, Bergonzelli GE , et al. Plasminogen-activator inhibitor type 1 is a potent natural inhibitor of extracellular matrix degradation by fibrosarcoma and colon carcinoma cells. Proc Natl Acad Sci U S A 1990; 87 (18) 6939-6943
  • 21 Alizadeh H, Ma D, Berman M , et al. Tissue-type plasminogen activator-induced invasion and metastasis of murine melanomas. Curr Eye Res 1995; 14 (6) 449-458
  • 22 Prager GW, Breuss JM, Steurer S, Mihaly J, Binder BR. Vascular endothelial growth factor (VEGF) induces rapid prourokinase (pro-uPA) activation on the surface of endothelial cells. Blood 2004; 103 (3) 955-962
  • 23 Okumura Y, Kamikubo Y, Curriden SA , et al. Kinetic analysis of the interaction between vitronectin and the urokinase receptor. J Biol Chem 2002; 277 (11) 9395-9404
  • 24 Czekay RP, Aertgeerts K, Curriden SA, Loskutoff DJ. Plasminogen activator inhibitor-1 detaches cells from extracellular matrices by inactivating integrins. J Cell Biol 2003; 160 (5) 781-791
  • 25 Jing Y, Kovacs K, Kurisetty V, Jiang Z, Tsinoremas N, Merchan JR. Role of plasminogen activator inhibitor-1 in urokinase's paradoxical in vivo tumor suppressing or promoting effects. Mol Cancer Res 2012; 10 (10) 1271-1281
  • 26 Soeda S, Shinomiya K, Ochiai T , et al. Plasminogen activator inhibitor-1 aids nerve growth factor-induced differentiation and survival of pheochromocytoma cells by activating both the extracellular signal-regulated kinase and c-Jun pathways. Neuroscience 2006; 141 (1) 101-108
  • 27 Zhang YP, Wang WL, Liu J , et al. Plasminogen activator inhibitor-1 promotes the proliferation and inhibits the apoptosis of pulmonary fibroblasts by Ca(2+) signaling. Thromb Res 2013; 131 (1) 64-71
  • 28 Devy L, Blacher S, Grignet-Debrus C , et al. The pro- or antiangiogenic effect of plasminogen activator inhibitor 1 is dose dependent. FASEB J 2002; 16 (2) 147-154
  • 29 Lambert V, Munaut C, Carmeliet P , et al. Dose-dependent modulation of choroidal neovascularization by plasminogen activator inhibitor type I: implications for clinical trials. Invest Ophthalmol Vis Sci 2003; 44 (6) 2791-2797
  • 30 Bajou K, Masson V, Gerard RD , et al. The plasminogen activator inhibitor PAI-1 controls in vivo tumor vascularization by interaction with proteases, not vitronectin. Implications for antiangiogenic strategies. J Cell Biol 2001; 152 (4) 777-784
  • 31 Eden G, Archinti M, Furlan F, Murphy R, Degryse B. The urokinase receptor interactome. Curr Pharm Des 2011; 17 (19) 1874-1889
  • 32 Gårdsvoll H, Gilquin B, Le Du MH, Ménèz A, Jørgensen TJ, Ploug M. Characterization of the functional epitope on the urokinase receptor. Complete alanine scanning mutagenesis supplemented by chemical cross-linking. J Biol Chem 2006; 281 (28) 19260-19272
  • 33 Fazioli F, Resnati M, Sidenius N, Higashimoto Y, Appella E, Blasi F. A urokinase-sensitive region of the human urokinase receptor is responsible for its chemotactic activity. EMBO J 1997; 16 (24) 7279-7286
  • 34 Ossowski L, Aguirre-Ghiso JA. Urokinase receptor and integrin partnership: coordination of signaling for cell adhesion, migration and growth. Curr Opin Cell Biol 2000; 12 (5) 613-620
  • 35 Yu W, Kim J, Ossowski L. Reduction in surface urokinase receptor forces malignant cells into a protracted state of dormancy. J Cell Biol 1997; 137 (3) 767-777
  • 36 Nowicki TS, Zhao H, Darzynkiewicz Z , et al. Downregulation of uPAR inhibits migration, invasion, proliferation, FAK/PI3K/Akt signaling and induces senescence in papillary thyroid carcinoma cells. Cell Cycle 2011; 10 (1) 100-107
  • 37 Gondi CS, Kandhukuri N, Dinh DH, Gujrati M, Rao JS. Down-regulation of uPAR and uPA activates caspase-mediated apoptosis and inhibits the PI3K/AKT pathway. Int J Oncol 2007; 31 (1) 19-27
  • 38 Eastman BM, Jo M, Webb DL, Takimoto S, Gonias SL. A transformation in the mechanism by which the urokinase receptor signals provides a selection advantage for estrogen receptor-expressing breast cancer cells in the absence of estrogen. Cell Signal 2012; 24 (9) 1847-1855
  • 39 Lund IK, Illemann M, Thurison T, Christensen IJ, Høyer-Hansen G. uPAR as anti-cancer target: evaluation of biomarker potential, histological localization, and antibody-based therapy. Curr Drug Targets 2011; 12 (12) 1744-1760
  • 40 Zhou HM, Nichols A, Meda P, Vassalli JD. Urokinase-type plasminogen activator and its receptor synergize to promote pathogenic proteolysis. EMBO J 2000; 19 (17) 4817-4826
  • 41 Høyer-Hansen G, Lund IK. Urokinase receptor variants in tissue and body fluids. Adv Clin Chem 2007; 44: 65-102
  • 42 Sorio C, Mafficini A, Furlan F , et al. Elevated urinary levels of urokinase-type plasminogen activator receptor (uPAR) in pancreatic ductal adenocarcinoma identify a clinically high-risk group. BMC Cancer 2011; 11: 448
  • 43 Lomholt AF, Høyer-Hansen G, Nielsen HJ, Christensen IJ. Intact and cleaved forms of the urokinase receptor enhance discrimination of cancer from non-malignant conditions in patients presenting with symptoms related to colorectal cancer. Br J Cancer 2009; 101 (6) 992-997
  • 44 Henic E, Borgfeldt C, Christensen IJ, Casslén B, Høyer-Hansen G. Cleaved forms of the urokinase plasminogen activator receptor in plasma have diagnostic potential and predict postoperative survival in patients with ovarian cancer. Clin Cancer Res 2008; 14 (18) 5785-5793
  • 45 Montuori N, Carriero MV, Salzano S, Rossi G, Ragno P. The cleavage of the urokinase receptor regulates its multiple functions. J Biol Chem 2002; 277 (49) 46932-46939
  • 46 Mazar AP. Urokinase plasminogen activator receptor choreographs multiple ligand interactions: implications for tumor progression and therapy. Clin Cancer Res 2008; 14 (18) 5649-5655
  • 47 Rao JS, Gopinath S, Malla RR , et al. Cathepsin B and uPAR regulate self-renewal of glioma-initiating cells through GLI-regulated Sox2 and Bmi1 expression. Carcinogenesis 2012;
  • 48 Jo M, Eastman BM, Webb DL, Stoletov K, Klemke R, Gonias SL. Cell signaling by urokinase-type plasminogen activator receptor induces stem cell-like properties in breast cancer cells. Cancer Res 2010; 70 (21) 8948-8958
  • 49 Cortes-Dericks L, Carboni GL, Schmid RA, Karoubi G. Putative cancer stem cells in malignant pleural mesothelioma show resistance to cisplatin and pemetrexed. Int J Oncol 2010; 37 (2) 437-444
  • 50 Alexander RA, Prager GW, Mihaly-Bison J , et al. VEGF-induced endothelial cell migration requires urokinase receptor (uPAR)-dependent integrin redistribution. Cardiovasc Res 2012; 94 (1) 125-135
  • 51 Breuss JM, Uhrin P. VEGF-initiated angiogenesis and the uPA/uPAR system. Cell Adhes Migr 2012; 6 (6) 535-615
  • 52 Harris L, Fritsche H, Mennel R , et al; American Society of Clinical Oncology. American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer. J Clin Oncol 2007; 25 (33) 5287-5312
  • 53 Look MP, van Putten WL, Duffy MJ , et al. Pooled analysis of prognostic impact of urokinase-type plasminogen activator and its inhibitor PAI-1 in 8377 breast cancer patients. J Natl Cancer Inst 2002; 94 (2) 116-128
  • 54 Jänicke F, Prechtl A, Thomssen C , et al; German N0 Study Group. Randomized adjuvant chemotherapy trial in high-risk, lymph node-negative breast cancer patients identified by urokinase-type plasminogen activator and plasminogen activator inhibitor type 1. J Natl Cancer Inst 2001; 93 (12) 913-920
  • 55 Harbeck N, Kates RE, Look MP , et al. Enhanced benefit from adjuvant chemotherapy in breast cancer patients classified high-risk according to urokinase-type plasminogen activator (uPA) and plasminogen activator inhibitor type 1 (n = 3424). Cancer Res 2002; 62 (16) 4617-4622
  • 56 Harbeck N, Kates RE, Schmitt M. Clinical relevance of invasion factors urokinase-type plasminogen activator and plasminogen activator inhibitor type 1 for individualized therapy decisions in primary breast cancer is greatest when used in combination. J Clin Oncol 2002; 20 (4) 1000-1007
  • 57 Foekens JA, Buessecker F, Peters HA , et al. Plasminogen activator inhibitor-2: prognostic relevance in 1012 patients with primary breast cancer. Cancer Res 1995; 55 (7) 1423-1427
  • 58 Duffy MJ, Duggan C, Mulcahy HE, McDermott EW, O'Higgins NJ. Urokinase plasminogen activator: a prognostic marker in breast cancer including patients with axillary node-negative disease. Clin Chem 1998; 44 (6 Pt 1) 1177-1183
  • 59 Grøndahl-Hansen J, Peters HA, van Putten WL , et al. Prognostic significance of the receptor for urokinase plasminogen activator in breast cancer. Clin Cancer Res 1995; 1 (10) 1079-1087
  • 60 Sternlicht MD, Dunning AM, Moore DH , et al. Prognostic value of PAI1 in invasive breast cancer: evidence that tumor-specific factors are more important than genetic variation in regulating PAI1 expression. Cancer Epidemiol Biomarkers Prev 2006; 15 (11) 2107-2114
  • 61 Annecke K, Schmitt M, Euler U , et al. uPA and PAI-1 in breast cancer: review of their clinical utility and current validation in the prospective NNBC-3 trial. Adv Clin Chem 2008; 45: 31-45
  • 62 Schmitt M, Harbeck N, Brünner N , et al. Cancer therapy trials employing level-of-evidence-1 disease forecast cancer biomarkers uPA and its inhibitor PAI-1. Expert Rev Mol Diagn 2011; 11 (6) 617-634
  • 63 Foekens JA, Look MP, Peters HA, van Putten WL, Portengen H, Klijn JG. Urokinase-type plasminogen activator and its inhibitor PAI-1: predictors of poor response to tamoxifen therapy in recurrent breast cancer. J Natl Cancer Inst 1995; 87 (10) 751-756
  • 64 Gutova M, Najbauer J, Gevorgyan A , et al. Identification of uPAR-positive chemoresistant cells in small cell lung cancer. PLoS ONE 2007; 2 (2) e243
  • 65 Hataji O, Taguchi O, Gabazza EC , et al. Increased circulating levels of thrombin-activatable fibrinolysis inhibitor in lung cancer patients. Am J Hematol 2004; 76 (3) 214-219
  • 66 Bauer TW, Liu W, Fan F , et al. Targeting of urokinase plasminogen activator receptor in human pancreatic carcinoma cells inhibits c-Met- and insulin-like growth factor-I receptor-mediated migration and invasion and orthotopic tumor growth in mice. Cancer Res 2005; 65 (17) 7775-7781
  • 67 Rabbani SA, Ateeq B, Arakelian A , et al. An anti-urokinase plasminogen activator receptor antibody (ATN-658) blocks prostate cancer invasion, migration, growth, and experimental skeletal metastasis in vitro and in vivo. Neoplasia 2010; 12 (10) 778-788
  • 68 Kenny HA, Leonhardt P, Ladanyi A , et al. Targeting the urokinase plasminogen activator receptor inhibits ovarian cancer metastasis. Clin Cancer Res 2011; 17 (3) 459-471
  • 69 Van Buren II G, Gray MJ, Dallas NA , et al. Targeting the urokinase plasminogen activator receptor with a monoclonal antibody impairs the growth of human colorectal cancer in the liver. Cancer 2009; 115 (14) 3360-3368
  • 70 Ulisse S, Baldini E, Sorrenti S, D'Armiento M. The urokinase plasminogen activator system: a target for anti-cancer therapy. Curr Cancer Drug Targets 2009; 9 (1) 32-71
  • 71 Ngo JC, Jiang L, Lin Z , et al. Structural basis for therapeutic intervention of uPA/uPAR system. Curr Drug Targets 2011; 12 (12) 1729-1743
  • 72 Jensen JK, Thompson LC, Bucci JC , et al. Crystal structure of plasminogen activator inhibitor-1 in an active conformation with normal thermodynamic stability. J Biol Chem 2011; 286 (34) 29709-29717
  • 73 Nienaber V, Wang J, Davidson D, Henkin J. Re-engineering of human urokinase provides a system for structure-based drug design at high resolution and reveals a novel structural subsite. J Biol Chem 2000; 275 (10) 7239-7248
  • 74 Xu X, Gårdsvoll H, Yuan C, Lin L, Ploug M, Huang M. Crystal structure of the urokinase receptor in a ligand-free form. J Mol Biol 2012; 416 (5) 629-641
  • 75 Huai Q, Mazar AP, Kuo A , et al. Structure of human urokinase plasminogen activator in complex with its receptor. Science 2006; 311 (5761) 656-659
  • 76 Law RH, Caradoc-Davies T, Cowieson N , et al. The X-ray crystal structure of full-length human plasminogen. Cell Rep 2012; 1 (3) 185-190
  • 77 Weisberg AD, Albornoz F, Griffin JP , et al. Pharmacological inhibition and genetic deficiency of plasminogen activator inhibitor-1 attenuates angiotensin II/salt-induced aortic remodeling. Arterioscler Thromb Vasc Biol 2005; 25 (2) 365-371
  • 78 Hennan JK, Morgan GA, Swillo RE , et al. Effect of tiplaxtinin (PAI-039), an orally bioavailable PAI-1 antagonist, in a rat model of thrombosis. J Thromb Haemost 2008; 6 (9) 1558-1564
  • 79 Hennan JK, Elokdah H, Leal M , et al. Evaluation of PAI-039 [1-benzyl-5-[4-(trifluoromethoxy)phenyl]-1H-indol-3-yl(oxo)acetic acid], a novel plasminogen activator inhibitor-1 inhibitor, in a canine model of coronary artery thrombosis. J Pharmacol Exp Ther 2005; 314 (2) 710-716
  • 80 Pandya V, Jain M, Chakrabarti G , et al. Discovery of inhibitors of plasminogen activator inhibitor-1: structure-activity study of 5-nitro-2-phenoxybenzoic acid derivatives. Bioorg Med Chem Lett 2011; 21 (19) 5701-5706
  • 81 Brown NJ. Therapeutic potential of plasminogen activator inhibitor-1 inhibitors. Ther Adv Cardiovasc Dis 2010; 4 (5) 315-324
  • 82 Yamaoka N, Kawano Y, Izuhara Y, Miyata T, Meguro K. Structure-activity relationships of new 2-acylamino-3-thiophenecarboxylic acid dimers as plasminogen activator inhibitor-1 inhibitors. Chem Pharm Bull (Tokyo) 2010; 58 (5) 615-619
  • 83 Vaughan DE, De Taeye BM, Eren M. PAI-1 antagonists: predictable indications and unconventional applications. Curr Drug Targets 2007; 8 (9) 962-970
  • 84 Cale JM, Li SH, Warnock M , et al. Characterization of a novel class of polyphenolic inhibitors of plasminogen activator inhibitor-1. J Biol Chem 2010; 285 (11) 7892-7902
  • 85 Van De Craen B, Scroyen I, Vranckx C , et al. Maximal PAI-1 inhibition in vivo requires neutralizing antibodies that recognize and inhibit glycosylated PAI-1. Thromb Res 2012; 129 (4) e126-e133
  • 86 Van De Craen B, Scroyen I, Abdelnabi R , et al. Characterization of a panel of monoclonal antibodies toward mouse PAI-1 that exert a significant profibrinolytic effect in vivo. Thromb Res 2011; 128 (1) 68-76
  • 87 Katz BA, Mackman R, Luong C , et al. Structural basis for selectivity of a small molecule, S1-binding, submicromolar inhibitor of urokinase-type plasminogen activator. Chem Biol 2000; 7 (4) 299-312
  • 88 Subasinghe NL, Illig C, Hoffman J , et al. Structure-based design, synthesis and SAR of a novel series of thiopheneamidine urokinase plasminogen activator inhibitors. Bioorg Med Chem Lett 2001; 11 (11) 1379-1382
  • 89 Sperl S, Jacob U, Arroyo de Prada N , et al. (4-aminomethyl)phenylguanidine derivatives as nonpeptidic highly selective inhibitors of human urokinase. Proc Natl Acad Sci U S A 2000; 97 (10) 5113-5118
  • 90 Meyer JE, Brocks C, Graefe H , et al. The Oral Serine Protease Inhibitor WX-671 - First Experience in Patients with Advanced Head and Neck Carcinoma. Breast Care (Basel) 2008; 3 (s2) 20-24
  • 91 Danø K, Rømer J, Nielsen BS , et al. Cancer invasion and tissue remodeling—cooperation of protease systems and cell types. APMIS 1999; 107 (1) 120-127
  • 92 Wang F, Eric Knabe W, Li L , et al. Design, synthesis, biochemical studies, cellular characterization, and structure-based computational studies of small molecules targeting the urokinase receptor. Bioorg Med Chem 2012; 20 (15) 4760-4773
  • 93 Kriegbaum MC, Persson M, Haldager L , et al. Rational targeting of the urokinase receptor (uPAR): development of antagonists and non-invasive imaging probes. Curr Drug Targets 2011; 12 (12) 1711-1728
  • 94 Ploug M, Østergaard S, Gårdsvoll H , et al. Peptide-derived antagonists of the urokinase receptor. affinity maturation by combinatorial chemistry, identification of functional epitopes, and inhibitory effect on cancer cell intravasation. Biochemistry 2001; 40 (40) 12157-12168
  • 95 Gorantla B, Asuthkar S, Rao JS, Patel J, Gondi CS. Suppression of the uPAR-uPA system retards angiogenesis, invasion, and in vivo tumor development in pancreatic cancer cells. Mol Cancer Res 2011; 9 (4) 377-389
  • 96 Gondi CS, Rao JS. Therapeutic potential of siRNA-mediated targeting of urokinase plasminogen activator, its receptor, and matrix metalloproteinases. Methods Mol Biol 2009; 487: 267-281
  • 97 de Virgilio M, Silvestris F. Urokinase receptor (uPAR) ligand based recombinant toxins for human cancer therapy. Curr Pharm Des 2011; 17 (19) 1979-1983
  • 98 Duriseti S, Goetz DH, Hostetter DR, LeBeau AM, Wei Y, Craik CS. Antagonistic anti-urokinase plasminogen activator receptor (uPAR) antibodies significantly inhibit uPAR-mediated cellular signaling and migration. J Biol Chem 2010; 285 (35) 26878-26888
  • 99 Harbeck N, Kates RE, Schmitt M , et al. Urokinase-type plasminogen activator and its inhibitor type 1 predict disease outcome and therapy response in primary breast cancer. Clin Breast Cancer 2004; 5 (5) 348-352
  • 100 Ji F, Chen YL, Jin EY, Wang WL, Yang ZL, Li YM. Relationship between matrix metalloproteinase-2 mRNA expression and clinicopathological and urokinase-type plasminogen activator system parameters and prognosis in human gastric cancer. World J Gastroenterol 2005; 11 (21) 3222-3226
  • 101 Heiss MM, Babic R, Allgayer H , et al. Tumor-associated proteolysis and prognosis: new functional risk factors in gastric cancer defined by the urokinase-type plasminogen activator system. J Clin Oncol 1995; 13 (8) 2084-2093
  • 102 Nekarda H, Schmitt M, Ulm K , et al. Prognostic impact of urokinase-type plasminogen activator and its inhibitor PAI-1 in completely resected gastric cancer. Cancer Res 1994; 54 (11) 2900-2907
  • 103 Zhang L, Zhao ZS, Ru GQ, Ma J. Correlative studies on uPA mRNA and uPAR mRNA expression with vascular endothelial growth factor, microvessel density, progression and survival time of patients with gastric cancer. World J Gastroenterol 2006; 12 (25) 3970-3976
  • 104 Cho JY, Chung HC, Noh SH, Roh JK, Min JS, Kim BS. High level of urokinase-type plasminogen activator is a new prognostic marker in patients with gastric carcinoma. Cancer 1997; 79 (5) 878-883
  • 105 Stephens RW, Nielsen HJ, Christensen IJ , et al. Plasma urokinase receptor levels in patients with colorectal cancer: relationship to prognosis. J Natl Cancer Inst 1999; 91 (10) 869-874
  • 106 Riisbro R, Christensen IJ, Nielsen HJ, Brünner N, Nilbert M, Fernebro E. Preoperative plasma soluble urokinase plasminogen activator receptor as a prognostic marker in rectal cancer patients. An EORTC-Receptor and Biomarker Group collaboration. Int J Biol Markers 2005; 20 (2) 93-102
  • 107 Skelly MM, Troy A, Duffy MJ , et al. Urokinase-type plasminogen activator in colorectal cancer: relationship with clinicopathological features and patient outcome. Clin Cancer Res 1997; 3 (10) 1837-1840
  • 108 Ganesh S, Sier CF, Heerding MM, Griffioen G, Lamers CB, Verspaget HW. Urokinase receptor and colorectal cancer survival. Lancet 1994; 344 (8919) 401-402
  • 109 Torzewski M, Sarbia M, Verreet P , et al. Prognostic significance of urokinase-type plasminogen activator expression in squamous cell carcinomas of the esophagus. Clin Cancer Res 1997; 3 (12 Pt 1) 2263-2268
  • 110 Nekarda H, Schlegel P, Schmitt M , et al. Strong prognostic impact of tumor-associated urokinase-type plasminogen activator in completely resected adenocarcinoma of the esophagus. Clin Cancer Res 1998; 4 (7) 1755-1763
  • 111 Shiomi H, Eguchi Y, Tani T, Kodama M, Hattori T. Cellular distribution and clinical value of urokinase-type plasminogen activator, its receptor, and plasminogen activator inhibitor-2 in esophageal squamous cell carcinoma. Am J Pathol 2000; 156 (2) 567-575
  • 112 Hsu DW, Efird JT, Hedley-Whyte ET. Prognostic role of urokinase-type plasminogen activator in human gliomas. Am J Pathol 1995; 147 (1) 114-123
  • 113 Landau BJ, Kwaan HC, Verrusio EN, Brem SS. Elevated levels of urokinase-type plasminogen activator and plasminogen activator inhibitor type-1 in malignant human brain tumors. Cancer Res 1994; 54 (4) 1105-1108
  • 114 Pavey SJ, Hawson GA, Marsh NA. Impact of the fibrinolytic enzyme system on prognosis and survival associated with non-small cell lung carcinoma. Blood Coagul Fibrinolysis 2001; 12 (1) 51-58
  • 115 Hofmann R, Lehmer A, Buresch M, Hartung R, Ulm K. Clinical relevance of urokinase plasminogen activator, its receptor, and its inhibitor in patients with renal cell carcinoma. Cancer 1996; 78 (3) 487-492
  • 116 Swiercz R, Wolfe JD, Zaher A, Jankun J. Expression of the plasminogen activation system in kidney cancer correlates with its aggressive phenotype. Clin Cancer Res 1998; 4 (4) 869-877
  • 117 Shariat SF, Roehrborn CG, McConnell JD , et al. Association of the circulating levels of the urokinase system of plasminogen activation with the presence of prostate cancer and invasion, progression, and metastasis. J Clin Oncol 2007; 25 (4) 349-355
  • 118 Miyake H, Hara I, Yamanaka K, Gohji K, Arakawa S, Kamidono S. Elevation of serum levels of urokinase-type plasminogen activator and its receptor is associated with disease progression and prognosis in patients with prostate cancer. Prostate 1999; 39 (2) 123-129
  • 119 Hienert G, Kirchheimer JC, Pflüger H, Binder BR. Urokinase-type plasminogen activator as a marker for the formation of distant metastases in prostatic carcinomas. J Urol 1988; 140 (6) 1466-1469
  • 120 Kobayashi H, Fujishiro S, Terao T. Impact of urokinase-type plasminogen activator and its inhibitor type 1 on prognosis in cervical cancer of the uterus. Cancer Res 1994; 54 (24) 6539-6548
  • 121 Kuhn W, Schmalfeldt B, Reuning U , et al. Prognostic significance of urokinase (uPA) and its inhibitor PAI-1 for survival in advanced ovarian carcinoma stage FIGO IIIc. Br J Cancer 1999; 79 (11-12) 1746-1751
  • 122 De Petro G, Tavian D, Copeta A, Portolani N, Giulini SM, Barlati S. Expression of urokinase-type plasminogen activator (u-PA), u-PA receptor, and tissue-type PA messenger RNAs in human hepatocellular carcinoma. Cancer Res 1998; 58 (10) 2234-2239
  • 123 Häckel CG, Krueger S, Grote HJ , et al. Overexpression of cathepsin B and urokinase plasminogen activator is associated with increased risk of recurrence and metastasis in patients with chondrosarcoma. Cancer 2000; 89 (5) 995-1003