Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2014; 25(1): 115-119
DOI: 10.1055/s-0033-1340056
DOI: 10.1055/s-0033-1340056
letter
Regioselective Oxidative Cleavage of Benzylidene Acetals of Glycopyranosides with Periodic Acid Catalyzed by Tetrabutylammonium Bromide
Further Information
Publication History
Received: 03 September 2013
Accepted after revision: 01 October 2013
Publication Date:
08 November 2013 (online)
Dedicated to the memory of Professor André Lubineau
Abstract
A combination of periodic acid, tetrabutylammonium bromide, and wet alumina in dichloromethane efficiently oxidized benzylidene acetals of carbohydrates to the corresponding hydroxybenzoates in excellent yields (>90%). Under these conditions, other protecting groups, such as tert-butyl(dimethyl)silyl, tert-butyl(diphenyl)silyl, and functional groups, such as epoxide, were unaffected. By varying the nature of the protecting group at the C3 position, good to high regioselectivity toward 4- or 6-benzoates was obtained.
Supporting Information
- for this article is available online at http://www.thieme-connect.com/ejournals/toc/synlett.
- Supporting Information
-
References and Notes
- 1 Hanessian S. Total Synthesis of Natural Products: The ‘Chiron’ Approach. Pergamon; Oxford: 1983
- 2a Greene TW, Wuts PG. M. Protective Groups in Organic Synthesis. Wiley-Interscience; New York: 1999. 3rd ed.
- 2b Protecting Groups. Kocieńsky PJ. Thieme; Stuttgart: 2005. 3rd ed
- 3a Preparative Carbohydrate Chemistry. Hanessian S. Marcel Dekker; New York: 1997
- 3b Ohlin M, Johnsson R, Ellervik U. Carbohydr. Res. 2011; 346: 1358 ; and references cited therein
- 4 Hanessian S, Staub AP. A. Tetrahedron Lett. 1973; 14: 3551
- 5 Deslongchamp P, Moreau C, Fréhel D, Chênevert R. Can. J. Chem. 1975; 73: 1204
- 6 Sato K, Igarashi T, Yanagisawa Y, Kawauchi N, Hashimoto H, Yoshimaura J. Chem. Lett. 1988; 1699
- 7 Binkley RW, Goewey GS, Johnson JC. J. Org. Chem. 1984; 49: 992
- 8a Oikawa Y, Yoshioka T, Yonemitsu O. Tetrahedron Lett. 1982; 23: 889
- 8b Zhang ZY, Magnusson G. J. Org. Chem. 1996; 61: 2394
- 9 Luzzio FA, Bobb RA. Tetrahedron Lett. 1997; 38: 1733
- 10a Adinolfi M, Barone G, Guariniello L, Iadanisi A. Tetrahedron Lett. 1999; 40: 8439
- 10b Senthilkumar PP, Aravind A, Basharan S. Tetrahedron Lett. 2007; 48: 1175
- 11 Chen Y, Wang PG. Tetrahedron Lett. 2001; 42: 4955
- 12a Stévenin A, Boyer F.-D, Beau J.-M. J. Org. Chem. 2010; 75: 1783
- 12b Mycock DK, Sherlock AE, Glossop PA, Hayes CJ. Tetrahedron Lett. 2008; 49: 6390
- 13a Vatèle J.-M. Tetrahedron Lett. 2006; 47: 715
- 13b Vatèle J.-M. Synlett 2006; 2055
- 13c Vatèle J.-M. Synlett 2008; 1785
- 13d Vatèle J.-M. Synlett 2009; 2143
- 13e Vatèle J.-M. Tetrahedron 2010; 66: 904
- 13f Barnych B, Vatèle J.-M. Synlett 2011; 2048
- 14a Cho NS, Park CH. Bull. Korean Chem. Soc. 1994; 15: 924
- 14b Cho NS, Park CH. J. Korean Chem. Soc. 1995; 39: 657
- 15a Miyazawa T, Endo T. Tetrahedron Lett. 1986; 27: 3395
- 15b Pradhan PP, Bobitt JM, Bailey WF. J. Org. Chem. 2009; 74: 9524
- 16a Kuhakarn C, Panchan W, Chiampanichayakul S, Samakkanad N, Pohmakotr M, Reutrakul V, Jaipetch T. Synthesis 2009; 929
- 16b Panchan W, Chiampanichayakul S, Snyder DL, Yodbuntung S, Pohmakotr M, Reutrakul V, Jaipetch T, Kuhakarn C. Tetrahedron 2010; 66: 2732
- 17 Curini M, Epifano F, Marcotullio MC, Rosati O. Synlett 1999; 777
- 18 For uses of periodic acid in conjunction with bromide salts in organic synthesis, see: Yousefi-Seyf J, Tajeian K, Kolvari E, Koukabi N, Khazaei A, Zolfigol MA. Bull. Korean Chem. Soc. 2012; 33: 2619 ; and references cited therein
- 19 Appropriate physical and analytical data were obtained for all new compounds (see Supporting Information).
- 20 Oxidative Cleavage of Benzylidene Acetals; General Procedure Wet alumina was prepared by mixing neutral alumina (50 g, Fluka ref. 06300; Brockmann activity 1) with H2O (10 g) and shaking until a free-flowing homogeneous powder was obtained. The wet Al2O3 (2.2 g), TBAB (0.16 g, 0.5 equiv), and H5IO6 (0.68 g, 3 equiv) were added successively to a solution of the benzylidene acetal (1 mmol) in CH2Cl2 (10 mL), and the suspension was vigorously stirred at r.t. for 90 min. The resulting orange suspension was poured onto a column of silica gel and the hydroxybenzoates were eluted with an appropriate mixture of PE and EtOAc.
- 21 Mori K. Tetrahedron 1977; 33: 289
- 22 Under the same reaction conditions [H5IO6 (3 equiv), TBAB (0.5 equiv), wet alumina, r.t., 90 min], 3-O-benzyl-1,2:5,6-di-O-isopropylidene-α-d-glucofuranose gave the debenzylated product in 81% yield.
- 23 Koukabi and co-workers have demonstrated by UV studies that Br2 is formed in a mixture of H5IO6 and NaBr in water; see ref. 18.
- 24 A bromoacetal intermediate has been proposed for the oxidative cleavage of benzylidene acetals with NBS in CCl4; see: Hanessian S, Plessas NR. J. Org. Chem. 1969; 34: 1035
- 25 For an example of a study on the mechanism of Al2O3-mediated oxidation, see: Kropp PJ, Breton GW, Fields JD, Tung JC, Loomis BR. J. Am. Chem. Soc. 2000; 122: 4280