Geburtshilfe Frauenheilkd 2013; 73(11): 1107-1111
DOI: 10.1055/s-0033-1351032
Review
GebFra Science
Georg Thieme Verlag KG Stuttgart · New York

Regulation of Endothelial Permeability in the Corpus Luteum: A Review of the Literature

Regulation endothelialer Permeabilität im Corpus luteum: eine Literaturübersicht
D. Herr
1   Frauenklinik, Universitätsklinikum Homburg/Saar, Homburg
,
I. Bekes
2   Frauenklinik, Universitätsklinikum Ulm, Ulm
,
C. Wulff
2   Frauenklinik, Universitätsklinikum Ulm, Ulm
› Author Affiliations
Further Information

Publication History

received 14 July 2013
revised 17 September 2013

accepted 19 September 2013

Publication Date:
05 December 2013 (online)

Abstract

The development of the human corpus luteum (yellow body) is dictated by a strictly controlled system of mutually communicating cells, the luteal steroid hormone-producing cells and endothelial cells. This cell-to-cell communication facilitates control of neoangiogenesis which is a prerequisite for the development of the corpus luteum and its function, the rapid release of large amounts of progesterone into the blood-vascular system. Preconditions for this process are the hormonal regulation of endothelial cell proliferation as well as of vascular permeability through LH and hCG. The morphological correlates of endothelial permeability are cell-to-cell adhesion molecules such as adherens junctions (AJ) and tight junctions (TJ) that open and close the gaps between mutually interacting, neighbouring endothelial cells like a “zip fastener”. Various types of cell adhesion molecules have been detected in the corpus luteum such as occludin, claudin 1 and claudin 5 as well as VE-cadherin. It may be assumed that the regulation of AJ and TJ proteins is of particular importance for the permeability and thus for the function of the corpus luteum in early pregnancy since hCG treatment leads to a down-regulation of cell adhesion molecules in the luteal vessels. This effect is apparently mediated by VEGF. From a functional point of view, the hCG-dependent and VEGF-mediated down-regulation of cell adhesion molecules leads to a reduced transmissibility of cell-to-cell contacts and thus to an increased endothelial permeability. In this process the various cell adhesion molecules are not only directly regulated by VEGF but they also mutually interact and thus influence one another.

Zusammenfassung

Die Entwicklung des humanen Corpus luteum ist durch ein streng reguliertes System von miteinander kommunizierenden Zellen, den lutealen Steroidhormon-produzierenden Zellen und den Endothelzellen, geprägt. Diese Zell-Zell-Kommunikation ermöglicht die Kontrolle von Neoangiogenese, die für die Entstehung des Corpus luteum Voraussetzung ist, und deren Aufgabe die rasche Freigabe von großen Mengen Progesteron ins Blutgefäßsystem ist. Voraussetzung für diesen Vorgang ist die hormonelle Regulation der Endothelzellproliferation sowie der Gefäßpermeabilität durch LH und hCG. Das morphologische Korrelat der endothelialen Permeabilität sind Zell-Zell-Adhäsionsmoleküle wie Adherens Junctions (AJ) und Tight Junctions (TJ), die „reißverschlussartig“ den Spalt benachbarter interagierender Endothelzellen öffnen und schließen. Im Corpus luteum konnten verschiedene Zell-Adhäsionsmoleküle nachgewiesen werden, darunter Occludin, Claudin 1 und Claudin 5 sowie VE-Cadherin. Es ist davon auszugehen, dass die Regulation von AJ- und TJ-Proteinen von besonderer Bedeutung für die Permeabilität und damit die Funktionalität des Corpus luteum in der Frühschwangerschaft ist, da hCG-Behandlung zu einer Herunterregulation der Zell-Adhäsionsmoleküle in den Lutealgefäßen führt. Offensichtlich ist dieser Effekt VEGF-vermittelt. Funktionell betrachtet führt die hCG-abhängige und VEGF-vermittelte Herunterregulation von Zelladhäsionsmolekülen zu einer verminderten Durchlässigkeit der Zell-Zell-Kontakte und damit zu gesteigerter endothelialer Permeabilität. Dabei werden die verschiedenen Zell-Adhäsionsmoleküle nicht nur direkt durch VEGF reguliert, sondern sie interagieren auch untereinander und beeinflussen sich auf diese Weise gegenseitig.

 
  • References

  • 1 Stocco C, Telleria C, Gibori G. The molecular control of corpus luteum formation, function, and regression. Endocr Rev 2007; 28: 117-149
  • 2 Matsubara H, Ikuta K, Ozaki Y et al. Gonadotropins and cytokines affect luteal function through control of apoptosis in human luteinized granulosa cells. J Clin Endocrinol Metab 2000; 85: 1620-1626
  • 3 Dickinson RE, Stewart AJ, Myers M et al. Differential expression and functional characterization of luteinizing hormone receptor splice variants in human luteal cells: implications for luteolysis. Endocrinology 2009; 150: 2873-2881
  • 4 Del Canto F, Sierralta W, Kohen P et al. Features of natural and gonadotropin-releasing hormone antagonist-induced corpus luteum regression and effects of in vivo human chorionic gonadotropin. J Clin Endocrinol Metab 2007; 92: 4436-4443
  • 5 Duncan WC, Gay E, Maybin JA. The effect of human chorionic gonadotrophin on the expression of progesterone receptors in human luteal cells in vivo and in vitro. Reproduction 2005; 130: 83-93
  • 6 Dickinson RE, Myers M, Duncan WC. Novel regulated expression of the SLIT/ROBO pathway in the ovary: possible role during luteolysis in women. Endocrinology 2008; 149: 5024-5034
  • 7 Baird DD, Weinberg CR, McConnaughey DR et al. Rescue of the corpus luteum in human pregnancy. Biol Reprod 2003; 68: 448-456
  • 8 Illingworth DV, Heap RB. A decrease in the metabolic clearance rate of progesterone in the coypu during pregnancy. J Reprod Fertil 1971; 27: 492-494
  • 9 Dejana E. Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol 2004; 5: 261-270
  • 10 Bazzoni G, Dejana E. Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 2004; 84: 869-901
  • 11 Walz A, Keck C, Weber H et al. Effects of luteinizing hormone and human chorionic gonadotropin on corpus luteum cells in a spheroid cell culture system. Mol Reprod Dev 2005; 72: 98-104
  • 12 Delvigne A, Rozenberg S. Review of clinical course and treatment of ovarian hyperstimulation syndrome (OHSS). Hum Reprod Update 2003; 9: 77-96
  • 13 Heger A, Sator M, Pietrowski D. Endometrial receptivity and its predictive value for IVF/ICSI-outcome. Geburtsh Frauenheilk 2012; 72: 710-715
  • 14 Isachenko V, Nawroth F, Rahimi G et al. Vascularised chorioallantoic membrane (CAM) culture system for cryopreserved human ovarian tissue as an alternative to xenotransplantation. Geburtsh Frauenheilk 2011; 71: 862-868
  • 15 Fatemi HM, Popovic-Todorovic B, Papanikolaou E et al. An update of luteal phase support in stimulated IVF cycles. Hum Reprod Update 2007; 13: 581-590
  • 16 Delvigne A, Rozenberg S. Systematic review of data concerning etiopathology of ovarian hyperstimulation syndrome. Int J Fertil Womens Med 2002; 47: 211-226
  • 17 Dejana E, Orsenigo F, Molendini C et al. Organization and signaling of endothelial cell-to-cell junctions in various regions of the blood and lymphatic vascular trees. Cell Tissue Res 2009; 335: 17-25
  • 18 Dejana E, Tournier-Lasserve E, Weinstein BM. The control of vascular integrity by endothelial cell junctions: molecular basis and pathological implications. Dev Cell 2009; 16: 209-221
  • 19 Cavey M, Rauzi M, Lenne PF et al. A two-tiered mechanism for stabilization and immobilization of E-cadherin. Nature 2008; 453: 751-756
  • 20 Chitaev NA, Troyanovsky SM. Adhesive but not lateral E-cadherin complexes require calcium and catenins for their formation. J Cell Biol 1998; 142: 837-846
  • 21 Nelson WJ, Veshnock PJ. Ankyrin binding to (Na+ + K+)ATPase and implications for the organization of membrane domains in polarized cells. Nature 1987; 328: 533-536
  • 22 Yap AS, Brieher WM, Gumbiner BM. Molecular and functional analysis of cadherin-based adherens junctions. Annu Rev Cell Dev Biol 1997; 13: 119-146
  • 23 Nitta T, Hata M, Gotoh S et al. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 2003; 161: 653-660
  • 24 Carmeliet P, Lampugnani MG, Moons L et al. Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 1999; 98: 147-157
  • 25 Groten T, Fraser HM, Duncan WC et al. Cell junctional proteins in the human corpus luteum: changes during the normal cycle and after HCG treatment. Hum Reprod 2006; 21: 3096-3102
  • 26 Langbein L, Grund C, Kuhn C et al. Tight junctions and compositionally related junctional structures in mammalian stratified epithelia and cell cultures derived therefrom. Eur J Cell Biol 2002; 81: 419-435
  • 27 Leach L, Babawale MO, Anderson M et al. Vasculogenesis, angiogenesis and the molecular organisation of endothelial junctions in the early human placenta. J Vasc Res 2002; 39: 246-259
  • 28 You K, Xu X, Fu J et al. Hyperoxia disrupts pulmonary epithelial barrier in newborn rats via the deterioration of occludin and ZO-1. Respir Res 2012; 13: 36
  • 29 Butt AM, Feng D, Nasrullah I et al. Computational identification of interplay between phosphorylation and O-beta-glycosylation of human occludin as potential mechanism to impair hepatitis C virus entry. Infect Genet Evol 2012; 12: 1235-1245
  • 30 Errede M, Girolamo F, Ferrara G et al. Blood-brain barrier alterations in the cerebral cortex in experimental autoimmune encephalomyelitis. J Neuropathol Exp Neurol 2012; 71: 840-854
  • 31 Zhu Y, Maric J, Nilsson M et al. Formation and barrier function of tight junctions in human ovarian surface epithelium. Biol Reprod 2004; 71: 53-59
  • 32 Fujibe M, Chiba H, Kojima T et al. Thr203 of claudin-1, a putative phosphorylation site for MAP kinase, is required to promote the barrier function of tight junctions. Exp Cell Res 2004; 295: 36-47
  • 33 Peppi M, Ghabriel MN. Tissue-specific expression of the tight junction proteins claudins and occludin in the rat salivary glands. J Anat 2004; 205: 257-266
  • 34 Wulff C, Dickson SE, Duncan WC et al. Angiogenesis in the human corpus luteum: simulated early pregnancy by HCG treatment is associated with both angiogenesis and vessel stabilization. Hum Reprod 2001; 16: 2515-2524
  • 35 Wulff C, Wilson H, Largue P et al. Angiogenesis in the human corpus luteum: localization and changes in angiopoietins, tie-2, and vascular endothelial growth factor messenger ribonucleic acid. J Clin Endocrinol Metab 2000; 85: 4302-4309
  • 36 Albert C, Garrido N, Mercader A et al. The role of endothelial cells in the pathogenesis of ovarian hyperstimulation syndrome. Mol Hum Reprod 2002; 8: 409-418
  • 37 Kitajima Y, Endo T, Nagasawa K et al. Hyperstimulation and a gonadotropin-releasing hormone agonist modulate ovarian vascular permeability by altering expression of the tight junction protein claudin-5. Endocrinology 2006; 147: 694-699
  • 38 Wulff C, Wiegand SJ, Saunders PT et al. Angiogenesis during follicular development in the primate and its inhibition by treatment with truncated Flt-1-Fc (vascular endothelial growth factor Trap(A40)). Endocrinology 2001; 142: 3244-3254
  • 39 Wulff C, Wilson H, Wiegand SJ et al. Prevention of thecal angiogenesis, antral follicular growth, and ovulation in the primate by treatment with vascular endothelial growth factor Trap R1R2. Endocrinology 2002; 143: 2797-2807
  • 40 Taylor PD, Wilson H, Hillier SG et al. Effects of inhibition of vascular endothelial growth factor at time of selection on follicular angiogenesis, expansion, development and atresia in the marmoset. Mol Hum Reprod 2007; 13: 729-736
  • 41 Rodewald M, Herr D, Fraser HM et al. Regulation of tight junction proteins occludin and claudin 5 in the primate ovary during the ovulatory cycle and after inhibition of vascular endothelial growth factor. Mol Hum Reprod 2007; 13: 781-789
  • 42 Sundfeldt K, Piontkewitz Y, Billig H et al. E-cadherin-catenin complex in the rat ovary: cell-specific expression during folliculogenesis and luteal formation. J Reprod Fertil 2000; 118: 375-385
  • 43 Kawagishi R, Tahara M, Morishige K et al. Expression of nectin-2 in mouse granulosa cells. Eur J Obstet Gynecol Reprod Biol 2005; 121: 71-76
  • 44 Alexander JS, Elrod JW. Extracellular matrix, junctional integrity and matrix metalloproteinase interactions in endothelial permeability regulation. J Anat 2002; 200: 561-574
  • 45 Nakhuda GS, Zimmermann RC, Bohlen P et al. Inhibition of the vascular endothelial cell (VE)-specific adhesion molecule VE-cadherin blocks gonadotropin-dependent folliculogenesis and corpus luteum formation and angiogenesis. Endocrinology 2005; 146: 1053-1059
  • 46 Wulff C, Wilson H, Rudge JS et al. Luteal angiogenesis: prevention and intervention by treatment with vascular endothelial growth factor trap(A40). J Clin Endocrinol Metab 2001; 86: 3377-3386
  • 47 Villasante A, Pacheco A, Ruiz A et al. Vascular endothelial cadherin regulates vascular permeability: Implications for ovarian hyperstimulation syndrome. J Clin Endocrinol Metab 2007; 92: 314-321
  • 48 Misrahi M, Beau I, Ghinea N et al. The LH/CG and FSH receptors: different molecular forms and intracellular traffic. Mol Cell Endocrinol 1996; 125: 161-167
  • 49 Rodewald M, Herr D, Duncan WC et al. Molecular mechanisms of ovarian hyperstimulation syndrome: paracrine reduction of endothelial claudin 5 by hCG in vitro is associated with increased endothelial permeability. Hum Reprod 2009; 24: 1191-1199
  • 50 Neulen J, Raczek S, Pogorzelski M et al. Secretion of vascular endothelial growth factor/vascular permeability factor from human luteinized granulosa cells is human chorionic gonadotrophin dependent. Mol Hum Reprod 1998; 4: 203-206
  • 51 Fraser HM, Bell J, Wilson H et al. Localization and quantification of cyclic changes in the expression of endocrine gland vascular endothelial growth factor in the human corpus luteum. J Clin Endocrinol Metab 2005; 90: 427-434
  • 52 Wright TJ, Leach L, Shaw PE et al. Dynamics of vascular endothelial-cadherin and beta-catenin localization by vascular endothelial growth factor-induced angiogenesis in human umbilical vein cells. Exp Cell Res 2002; 280: 159-168
  • 53 Lampugnani MG, Orsenigo F, Gagliani MC et al. Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments. J Cell Biol 2006; 174: 593-604
  • 54 Kametani Y, Takeichi M. Basal-to-apical cadherin flow at cell junctions. Nat Cell Biol 2007; 9: 92-98
  • 55 Furuse M, Tsukita S. Claudins in occluding junctions of humans and flies. Trends Cell Biol 2006; 16: 181-188
  • 56 Van Itallie CM, Anderson JM. Claudins and epithelial paracellular transport. Annu Rev Physiol 2006; 68: 403-429
  • 57 Herr D, Fraser HM, Konrad R et al. Human chorionic gonadotropin controls luteal vascular permeability via vascular endothelial growth factor by down-regulation of a cascade of adhesion proteins. Fertil Steril 2013; 99: 1749-1758