Semin Respir Crit Care Med 2013; 34(04): 459-474
DOI: 10.1055/s-0033-1351121
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Genetic Heterogeneity and Risk of Acute Respiratory Distress Syndrome

Nuala J. Meyer
1   Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
,
Jason D. Christie
1   Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
2   Department of Biostatistics and Epidemiology, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
› Author Affiliations
Further Information

Publication History

Publication Date:
11 August 2013 (online)

Abstract

Genetic variation explains some of the observed heterogeneity in patients' risk for developing the acute respiratory distress syndrome (ARDS). Although the lack of extant family pedigrees for ARDS precludes an estimate of heritability of the syndrome, ARDS may function as a pattern of response to injury or infection, traits that exhibit strong heritability. A total of 34 genes have now been reported to influence ARDS susceptibility, the majority of which arose as candidate genes based on the current pathophysiological understanding of ARDS, with particular focus on inflammation and endothelial or epithelial injury. In addition, novel candidate genes have emerged from agnostic genetic approaches, including genome-wide association studies, orthologous gene expression profiling across animal models of lung injury, and human peripheral blood gene expression data. The genetic risk for ARDS seems to vary both by ancestry and by the subtype of ARDS, suggesting that both factors may be valid considerations in clinical trial design.

 
  • References

  • 1 Collins FS, Green ED, Guttmacher AE, Guyer MS. US National Human Genome Research Institute. A vision for the future of genomics research. Nature 2003; 422 (6934) 835-847
  • 2 International HapMap Consortium. A haplotype map of the human genome. Nature 2005; 437 (7063) 1299-1320
  • 3 Frazer KA, Ballinger DG, Cox DR , et al; International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature 2007; 449 (7164) 851-861
  • 4 Altshuler DM, Gibbs RA, Peltonen L , et al; International HapMap 3 Consortium. Integrating common and rare genetic variation in diverse human populations. Nature 2010; 467 (7311) 52-58
  • 5 Rahim NG, Harismendy O, Topol EJ, Frazer KA. Genetic determinants of phenotypic diversity in humans. Genome Biol 2008; 9 (4) 215
  • 6 A catalog of published genome-wide association studies. www.genome.gov/gwastudies . Accessed March 13, 2012
  • 7 Hindorff LA, Sethupathy P, Junkins HA , et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 2009; 106 (23) 9362-9367
  • 8 Pepe PE, Potkin RT, Reus DH, Hudson LD, Carrico CJ. Clinical predictors of the adult respiratory distress syndrome. Am J Surg 1982; 144 (1) 124-130
  • 9 Blank R, Napolitano LM. Epidemiology of ARDS and ALI. Crit Care Clin 2011; 27 (3) 439-458
  • 10 Villar J, Pérez-Méndez L, Basaldúa S , et al; Hospitales Españoles Para el Estudio de la Lesión Pulmonar (HELP) Network*. A risk tertiles model for predicting mortality in patients with acute respiratory distress syndrome: age, plateau pressure, and P(aO(2))/F(IO(2)) at ARDS onset can predict mortality. Respir Care 2011; 56 (4) 420-428
  • 11 Cooke CR, Shah CV, Gallop R , et al; National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Network. A simple clinical predictive index for objective estimates of mortality in acute lung injury. Crit Care Med 2009; 37 (6) 1913-1920
  • 12 Villar J, Flores C, Pérez-Méndez L, Blanco J, Muros M. Genetic determinants of survival in sepsis and acute lung injury. Minerva Anestesiol 2008; 74 (6) 341-345
  • 13 Gao L, Barnes KC. Recent advances in genetic predisposition to clinical acute lung injury. Am J Physiol Lung Cell Mol Physiol 2009; 296 (5) L713-L725
  • 14 Barnes KC. Genetic determinants and ethnic disparities in sepsis-associated acute lung injury. Proc Am Thorac Soc 2005; 2 (3) 195-201
  • 15 Finch CE. Evolution in health and medicine Sackler colloquium: Evolution of the human lifespan and diseases of aging: roles of infection, inflammation, and nutrition. Proc Natl Acad Sci U S A 2010; 107 (Suppl. 01) 1718-1724
  • 16 Van Dyke AL, Cote ML, Wenzlaff AS, Land S, Schwartz AG. Cytokine SNPs: Comparison of allele frequencies by race and implications for future studies. Cytokine 2009; 46 (2) 236-244
  • 17 Akey JM. Constructing genomic maps of positive selection in humans: where do we go from here?. Genome Res 2009; 19 (5) 711-722
  • 18 Grossman SR, Shlyakhter I, Karlsson EK , et al. A composite of multiple signals distinguishes causal variants in regions of positive selection. Science 2010; 327 (5967) 883-886
  • 19 Laland KN, Odling-Smee J, Myles S. How culture shaped the human genome: bringing genetics and the human sciences together. Nat Rev Genet 2010; 11 (2) 137-148
  • 20 de Vries RR, Meera Khan P, Bernini LF, van Loghem E, van Rood JJ. Genetic control of survival in epidemics. J Immunogenet 1979; 6 (4) 271-287
  • 21 Heurich M, Martínez-Barricarte R, Francis NJ , et al. Common polymorphisms in C3, factor B, and factor H collaborate to determine systemic complement activity and disease risk. Proc Natl Acad Sci U S A 2011; 108 (21) 8761-8766
  • 22 Sørensen TI, Nielsen GG, Andersen PK, Teasdale TW. Genetic and environmental influences on premature death in adult adoptees. N Engl J Med 1988; 318 (12) 727-732
  • 23 Rebbeck TR. Biomarkers of inherited susceptibility and cancer. IARC Sci Publ 2004; (157) 91-103
  • 24 Christie JD. Genetic epidemiology of acute lung injury: choosing the right candidate genes is the first step. Crit Care 2004; 8 (6) 411-413
  • 25 Frazer KA, Murray SS, Schork NJ, Topol EJ. Human genetic variation and its contribution to complex traits. Nat Rev Genet 2009; 10 (4) 241-251
  • 26 Feero WG, Guttmacher AE, Collins FS. Genomic medicine—an updated primer. N Engl J Med 2010; 362 (21) 2001-2011
  • 27 McCarthy MI, Abecasis GR, Cardon LR , et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges. Nat Rev Genet 2008; 9 (5) 356-369
  • 28 Bostrom MA, Lu L, Chou J , et al. Candidate genes for non-diabetic ESRD in African Americans: a genome-wide association study using pooled DNA. Hum Genet 2010; 128 (2) 195-204
  • 29 Tzur S, Rosset S, Shemer R , et al. Missense mutations in the APOL1 gene are highly associated with end stage kidney disease risk previously attributed to the MYH9 gene. Hum Genet 2010; 128 (3) 345-350
  • 30 Ghoussaini M, Song H, Koessler T , et al; UK Genetic Prostate Cancer Study Collaborators/British Association of Urological Surgeons' Section of Oncology; UK ProtecT Study Collaborators. Multiple loci with different cancer specificities within the 8q24 gene desert. J Natl Cancer Inst 2008; 100 (13) 962-966
  • 31 Keating BJ, Tischfield S, Murray SS , et al. Concept, design and implementation of a cardiovascular gene-centric 50 k SNP array for large-scale genomic association studies. PLoS ONE 2008; 3 (10) e3583
  • 32 Lanktree MB, Guo Y, Murtaza M , et al; Hugh Watkins on behalf of PROCARDIS; Meena Kumari on behalf of the Whitehall II Study and the WHII 50K Group. Meta-analysis of Dense Genecentric Association Studies Reveals Common and Uncommon Variants Associated with Height. Am J Hum Genet 2011; 88 (1) 6-18
  • 33 Neale BM, Sham PC. The future of association studies: gene-based analysis and replication. Am J Hum Genet 2004; 75 (3) 353-362
  • 34 Wu MC, Kraft P, Epstein MP , et al. Powerful SNP-set analysis for case-control genome-wide association studies. Am J Hum Genet 2010; 86 (6) 929-942
  • 35 Musunuru K, Lettre G, Young T , et al; NHLBI Candidate Gene Association Resource. Candidate gene association resource (CARe): design, methods, and proof of concept. Circ Cardiovasc Genet 2010; 3 (3) 267-275
  • 36 Cappola TP, Li M, He J , et al. Common variants in HSPB7 and FRMD4B associated with advanced heart failure. Circ Cardiovasc Genet 2010; 3 (2) 147-154
  • 37 Meyer NJ, Li M, Feng R , et al. ANGPT2 genetic variant is associated with trauma-associated acute lung injury and altered plasma angiopoietin-2 isoform ratio. Am J Respir Crit Care Med 2011; 183 (10) 1344-1353
  • 38 Zúñiga J, Buendía-Roldán I, Zhao Y , et al. Genetic variants associated with severe pneumonia in A/H1N1 influenza infection. Eur Respir J 2012; 39 (3) 604-610
  • 39 Ionita-Laza I, Makarov V, Yoon S , et al. Finding disease variants in Mendelian disorders by using sequence data: methods and applications. Am J Hum Genet 2011; 89 (6) 701-712
  • 40 Gibson G. Rare and common variants: twenty arguments. Nat Rev Genet 2011; 13 (2) 135-145
  • 41 Tennessen JA, Bigham AW, O'Connor TD , et al; Broad GO; Seattle GO; NHLBI Exome Sequencing Project. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 2012; 337 (6090) 64-69
  • 42 Center DM, Schwartz DA, Solway J , et al. Genomic medicine and lung diseases. Am J Respir Crit Care Med 2012; 186 (3) 280-285
  • 43 Wurfel MM, Gordon AC, Holden TD , et al. Toll-like receptor 1 polymorphisms affect innate immune responses and outcomes in sepsis. Am J Respir Crit Care Med 2008; 178 (7) 710-720
  • 44 Barros SP, Offenbacher S. Epigenetics: connecting environment and genotype to phenotype and disease. J Dent Res 2009; 88 (5) 400-408
  • 45 Esteller M. Non-coding RNAs in human disease. Nat Rev Genet 2011; 12 (12) 861-874
  • 46 Zhou T, Garcia JGN, Zhang W. Integrating microRNAs into a system biology approach to acute lung injury. Transl Res 2011; 157 (4) 180-190
  • 47 Musani SK, Shriner D, Liu N , et al. Detection of gene x gene interactions in genome-wide association studies of human population data. Hum Hered 2007; 63 (2) 67-84
  • 48 Arcaroli JJ, Liu N, Yi N, Abraham E. Association between IL-32 genotypes and outcome in infection-associated acute lung injury. Crit Care 2011; 15 (3) R138
  • 49 Meyer NJ, Daye ZJ, Rushefski M , et al. SNP-set analysis replicates acute lung injury genetic risk factors. BMC Med Genet 2012; 13: 52
  • 50 Nogee LM, Garnier G, Dietz HC , et al. A mutation in the surfactant protein B gene responsible for fatal neonatal respiratory disease in multiple kindreds. J Clin Invest 1994; 93 (4) 1860-1863
  • 51 Lin Z, deMello DE, Wallot M, Floros J. An SP-B gene mutation responsible for SP-B deficiency in fatal congenital alveolar proteinosis: evidence for a mutation hotspot in exon 4. Mol Genet Metab 1998; 64 (1) 25-35
  • 52 Lin Z, Pearson C, Chinchilli V , et al. Polymorphisms of human SP-A, SP-B, and SP-D genes: association of SP-B Thr131Ile with ARDS. Clin Genet 2000; 58 (3) 181-191
  • 53 Dahmer MK, O'cain P, Patwari PP , et al. The influence of genetic variation in surfactant protein B on severe lung injury in African American children. Crit Care Med 2011; 39 (5) 1138-1144
  • 54 Quasney MW, Waterer GW, Dahmer MK , et al. Association between surfactant protein B + 1580 polymorphism and the risk of respiratory failure in adults with community-acquired pneumonia. Crit Care Med 2004; 32 (5) 1115-1119
  • 55 Gong MN, Wei Z, Xu LL, Miller DP, Thompson BT, Christiani DC. Polymorphism in the surfactant protein-B gene, gender, and the risk of direct pulmonary injury and ARDS. Chest 2004; 125 (1) 203-211
  • 56 Currier PF, Gong MN, Zhai R , et al. Surfactant protein-B polymorphisms and mortality in the acute respiratory distress syndrome. Crit Care Med 2008; 36 (9) 2511-2516
  • 57 Willson DF, Thomas NJ, Markovitz BP , et al; Pediatric Acute Lung Injury and Sepsis Investigators. Effect of exogenous surfactant (calfactant) in pediatric acute lung injury: a randomized controlled trial. JAMA 2005; 293 (4) 470-476
  • 58 Sheu CC, Zhai R, Su L , et al. Sex-specific association of epidermal growth factor gene polymorphisms with acute respiratory distress syndrome. Eur Respir J 2009; 33 (3) 543-550
  • 59 Ware LB, Matthay MA. The acute respiratory distress syndrome. N Engl J Med 2000; 342 (18) 1334-1349
  • 60 dos Santos CC, Okutani D, Hu P , et al. Differential gene profiling in acute lung injury identifies injury-specific gene expression. Crit Care Med 2008; 36 (3) 855-865
  • 61 Meyer NJ, Huang Y, Singleton PA , et al. GADD45a is a novel candidate gene in inflammatory lung injury via influences on Akt signaling. FASEB J 2009; 23 (5) 1325-1337
  • 62 Marshall RP, Webb S, Hill MR, Humphries SE, Laurent GJ. Genetic polymorphisms associated with susceptibility and outcome in ARDS. Chest 2002; 121 (3, Suppl): 68S-69S
  • 63 Flores C, Ma SF, Maresso K, Wade MS, Villar J, Garcia JG. IL6 gene-wide haplotype is associated with susceptibility to acute lung injury. Transl Res 2008; 152 (1) 11-17
  • 64 Nonas SA, Finigan JH, Gao L, Garcia JG. Functional genomic insights into acute lung injury: role of ventilators and mechanical stress. Proc Am Thorac Soc 2005; 2 (3) 188-194
  • 65 Schroeder O, Schulte KM, Schroeder J, Ekkernkamp A, Laun RA. The -1082 interleukin-10 polymorphism is associated with acute respiratory failure after major trauma: a prospective cohort study. Surgery 2008; 143 (2) 233-242
  • 66 Gong MN, Thompson BT, Williams PL , et al. Interleukin-10 polymorphism in position -1082 and acute respiratory distress syndrome. Eur Respir J 2006; 27 (4) 674-681
  • 67 Christie JD, Wurfel MM, Feng R , et al; Trauma ALI SNP Consortium (TASC) investigators. Genome wide association identifies PPFIA1 as a candidate gene for acute lung injury risk following major trauma. PLoS ONE 2012; 7 (1) e28268
  • 68 Zeng L, Gu W, Chen K , et al. Clinical relevance of the interleukin 10 promoter polymorphisms in Chinese Han patients with major trauma: genetic association studies. Crit Care 2009; 13 (6) R188
  • 69 Abu-Maziad A, Schaa K, Bell EF , et al. Role of polymorphic variants as genetic modulators of infection in neonatal sepsis. Pediatr Res 2010; 68 (4) 323-329
  • 70 Lin P-I, Vance JM, Pericak-Vance MA, Martin ER. No gene is an island: the flip-flop phenomenon. Am J Hum Genet 2007; 80 (3) 531-538
  • 71 Villar J, Pérez-Méndez L, Flores C , et al. A CXCL2 polymorphism is associated with better outcomes in patients with severe sepsis. Crit Care Med 2007; 35 (10) 2292-2297
  • 72 Meyer NJ, Feng R, Li M , et al. IL1RN Coding Variant Is Associated with Lower Risk of Acute Respiratory Distress Syndrome and Increased Plasma IL-1 Receptor Antagonist. Am J Respir Crit Care Med 2013; 187 (9) 950-959
  • 73 Donnelly SC, Strieter RM, Reid PT , et al. The association between mortality rates and decreased concentrations of interleukin-10 and interleukin-1 receptor antagonist in the lung fluids of patients with the adult respiratory distress syndrome. Ann Intern Med 1996; 125 (3) 191-196
  • 74 Hildebrand F, Stuhrmann M, van Griensven M , et al. Association of IL-8-251A/T polymorphism with incidence of Acute Respiratory Distress Syndrome (ARDS) and IL-8 synthesis after multiple trauma. Cytokine 2007; 37 (3) 192-199
  • 75 Øhlenschlaeger T, Garred P, Madsen HO, Jacobsen S. Mannose-binding lectin variant alleles and the risk of arterial thrombosis in systemic lupus erythematosus. N Engl J Med 2004; 351 (3) 260-267
  • 76 Summerfield JA, Sumiya M, Levin M, Turner MW. Association of mutations in mannose binding protein gene with childhood infection in consecutive hospital series. BMJ 1997; 314 (7089) 1229-1232
  • 77 Summerfield JA, Ryder S, Sumiya M , et al. Mannose binding protein gene mutations associated with unusual and severe infections in adults. Lancet 1995; 345 (8954) 886-889
  • 78 Super M, Thiel S, Lu J, Levinsky RJ, Turner MW. Association of low levels of mannan-binding protein with a common defect of opsonisation. Lancet 1989; 2 (8674) 1236-1239
  • 79 Soothill JF, Harvey BA. Defective opsonization: a common immunity deficiency. Arch Dis Child 1976; 51 (2) 91-99
  • 80 Bax WA, Cluysenaer OJ, Bartelink AK, Aerts PC, Ezekowitz RA, van Dijk H. Association of familial deficiency of mannose-binding lectin and meningococcal disease. Lancet 1999; 354 (9184) 1094-1095
  • 81 Turner MW. The role of mannose-binding lectin in health and disease. Mol Immunol 2003; 40 (7) 423-429
  • 82 Walport MJ. Complement. First of two parts. N Engl J Med 2001; 344 (14) 1058-1066
  • 83 Gong MN, Zhou W, Williams PL, Thompson BT, Pothier L, Christiani DC. Polymorphisms in the mannose binding lectin-2 gene and acute respiratory distress syndrome. Crit Care Med 2007; 35 (1) 48-56
  • 84 Ip WK, Chan KH, Law HK , et al. Mannose-binding lectin in severe acute respiratory syndrome coronavirus infection. J Infect Dis 2005; 191 (10) 1697-1704
  • 85 Garcia-Laorden MI, Sole-Violan J, Rodriguez de Castro F , et al. Mannose-binding lectin and mannose-binding lectin-associated serine protease 2 in susceptibility, severity, and outcome of pneumonia in adults. J Allergy Clin Immunol 2008; 122 (2) 368-374 , e1–e2
  • 86 Endeman H, Herpers BL, de Jong BAW , et al. Mannose-binding lectin genotypes in susceptibility to community-acquired pneumonia. Chest 2008; 134 (6) 1135-1140
  • 87 Kangelaris KN, Sapru A, Calfee CS , et al; National Heart, Lung, and Blood Institute ARDS Network. The association between a Darc gene polymorphism and clinical outcomes in African American patients with acute lung injury. Chest 2012; 141 (5) 1160-1169
  • 88 Glavan BJ, Holden TD, Goss CH , et al; ARDSnet Investigators. Genetic variation in the FAS gene and associations with acute lung injury. Am J Respir Crit Care Med 2011; 183 (3) 356-363
  • 89 Albertine KH, Soulier MF, Wang Z , et al. Fas and fas ligand are up-regulated in pulmonary edema fluid and lung tissue of patients with acute lung injury and the acute respiratory distress syndrome. Am J Pathol 2002; 161 (5) 1783-1796
  • 90 Herrero R, Kajikawa O, Matute-Bello G , et al. The biological activity of FasL in human and mouse lungs is determined by the structure of its stalk region. J Clin Invest 2011; 121 (3) 1174-1190
  • 91 Matute-Bello G, Lee JS, Liles WC , et al. Fas-mediated acute lung injury requires fas expression on nonmyeloid cells of the lung. J Immunol 2005; 175 (6) 4069-4075
  • 92 Pino-Yanes M, Corrales A, Casula M , et al; GRECIA and GEN-SEP Groups. Common variants of TLR1 associate with organ dysfunction and sustained pro-inflammatory responses during sepsis. PLoS ONE 2010; 5 (10) e13759
  • 93 Yamamoto M, Sato S, Hemmi H , et al. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 2002; 420 (6913) 324-329
  • 94 Kumpf O, Giamarellos-Bourboulis EJ, Koch A , et al. Influence of genetic variations in TLR4 and TIRAP/Mal on the course of sepsis and pneumonia and cytokine release: an observational study in three cohorts. Crit Care 2010; 14 (3) R103
  • 95 Ferwerda B, Alonso S, Banahan K , et al. Functional and genetic evidence that the Mal/TIRAP allele variant 180L has been selected by providing protection against septic shock. Proc Natl Acad Sci U S A 2009; 106 (25) 10272-10277
  • 96 Khor CC, Chapman SJ, Vannberg FO , et al. A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat Genet 2007; 39 (4) 523-528
  • 97 Hamann L, Kumpf O, Schuring RP , et al. Low frequency of the TIRAP S180L polymorphism in Africa, and its potential role in malaria, sepsis, and leprosy. BMC Med Genet 2009; 10: 65
  • 98 Song Z, Tong C, Sun Z , et al. Genetic variants in the TIRAP gene are associated with increased risk of sepsis-associated acute lung injury. BMC Med Genet 2010; 11: 168
  • 99 Pino-Yanes M, Ma SF, Sun X , et al. Interleukin-1 receptor-associated kinase 3 gene associates with susceptibility to acute lung injury. Am J Respir Cell Mol Biol 2011; 45 (4) 740-745
  • 100 Wiersinga WJ, van't Veer C, van den Pangaart PS , et al. Immunosuppression associated with interleukin-1R-associated-kinase-M upregulation predicts mortality in gram-negative sepsis (melioidosis). Crit Care Med 2009; 37 (2) 569-576
  • 101 Kobayashi K, Hernandez LD, Galán JE, Janeway Jr CA, Medzhitov R, Flavell RA. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 2002; 110 (2) 191-202
  • 102 Villar J, Cabrera N, Casula M , et al. Mechanical ventilation modulates Toll-like receptor signaling pathway in a sepsis-induced lung injury model. Intensive Care Med 2010; 36 (6) 1049-1057
  • 103 Huxford T, Huang DB, Malek S, Ghosh G. The crystal structure of the IkappaBalpha/NF-kappaB complex reveals mechanisms of NF-kappaB inactivation. Cell 1998; 95 (6) 759-770
  • 104 Zhai R, Zhou W, Gong MN , et al. Inhibitor kappaB-alpha haplotype GTC is associated with susceptibility to acute respiratory distress syndrome in Caucasians. Crit Care Med 2007; 35 (3) 893-898
  • 105 Bajwa EK, Cremer PC, Gong MN , et al. An NFKB1 promoter insertion/deletion polymorphism influences risk and outcome in acute respiratory distress syndrome among Caucasians. PLoS ONE 2011; 6 (5) e19469
  • 106 Adamzik M, Frey UH, Rieman K , et al. Insertion/deletion polymorphism in the promoter of NFKB1 influences severity but not mortality of acute respiratory distress syndrome. Intensive Care Med 2007; 33 (7) 1199-1203
  • 107 Karban AS, Okazaki T, Panhuysen CI , et al. Functional annotation of a novel NFKB1 promoter polymorphism that increases risk for ulcerative colitis. Hum Mol Genet 2004; 13 (1) 35-45
  • 108 Jia SH, Li Y, Parodo J , et al. Pre-B cell colony-enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis. J Clin Invest 2004; 113 (9) 1318-1327
  • 109 Grigoryev DN, Ma SF, Irizarry RA, Ye SQ, Quackenbush J, Garcia JG. Orthologous gene-expression profiling in multi-species models: search for candidate genes. Genome Biol 2004; 5 (5) R34
  • 110 Ye SQ, Simon BA, Maloney JP , et al. Pre-B-cell colony-enhancing factor as a potential novel biomarker in acute lung injury. Am J Respir Crit Care Med 2005; 171 (4) 361-370
  • 111 Bajwa EK, Yu CJ, Gong MN, Thompson BT, Christiani DC. PBEF gene polymorphisms influence the risk of developing ARDS. Proc Am Thorac Soc 2006; 3: A272
  • 112 Ye SQ, Zhang LQ, Adyshev D , et al. Pre-B-cell-colony-enhancing factor is critically involved in thrombin-induced lung endothelial cell barrier dysregulation. Microvasc Res 2005; 70 (3) 142-151
  • 113 Gong MN, Zhou W, Williams PL , et al. -308GA and TNFB polymorphisms in acute respiratory distress syndrome. Eur Respir J 2005; 26 (3) 382-389
  • 114 Gao L, Flores C, Fan-Ma S , et al. Macrophage migration inhibitory factor in acute lung injury: expression, biomarker, and associations. Transl Res 2007; 150 (1) 18-29
  • 115 Marshall RP, Webb S, Bellingan GJ , et al. Angiotensin converting enzyme insertion/deletion polymorphism is associated with susceptibility and outcome in acute respiratory distress syndrome. Am J Respir Crit Care Med 2002; 166 (5) 646-650
  • 116 Jerng JS, Yu CJ, Wang HC, Chen KY, Cheng SL, Yang PC. Polymorphism of the angiotensin-converting enzyme gene affects the outcome of acute respiratory distress syndrome. Crit Care Med 2006; 34 (4) 1001-1006
  • 117 Villar J, Flores C, Pérez-Méndez L , et al; GRECIA group; GEN-SEP group. Angiotensin-converting enzyme insertion/deletion polymorphism is not associated with susceptibility and outcome in sepsis and acute respiratory distress syndrome. Intensive Care Med 2008; 34 (3) 488-495
  • 118 Adamzik M, Frey U, Sixt S , et al. ACE I/D but not AGT (-6)A/G polymorphism is a risk factor for mortality in ARDS. Eur Respir J 2007; 29 (3) 482-488
  • 119 Rice TW, Wheeler AP, Thompson BT , et al; National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network. Initial trophic vs full enteral feeding in patients with acute lung injury: the EDEN randomized trial. JAMA 2012; 307 (8) 795-803
  • 120 Rice TW, Wheeler AP, Thompson BT, deBoisblanc BP, Steingrub J, Rock P ; NIH NHLBI Acute Respiratory Distress Syndrome Network of Investigators. Enteral omega-3 fatty acid, gamma-linolenic acid, and antioxidant supplementation in acute lung injury. JAMA 2011; 306 (14) 1574-1581
  • 121 Garcia JG, Verin AD, Herenyiova M, English D. Adherent neutrophils activate endothelial myosin light chain kinase: role in transendothelial migration. J Appl Physiol 1998; 84 (5) 1817-1821
  • 122 Shi S, Verin AD, Schaphorst KL , et al. Role of tyrosine phosphorylation in thrombin-induced endothelial cell contraction and barrier function. Endothelium 1998; 6 (2) 153-171
  • 123 Garcia JG, Davis HW, Patterson CE. Regulation of endothelial cell gap formation and barrier dysfunction: role of myosin light chain phosphorylation. J Cell Physiol 1995; 163 (3) 510-522
  • 124 Gao L, Grant A, Halder I , et al. Novel polymorphisms in the myosin light chain kinase gene confer risk for acute lung injury. Am J Respir Cell Mol Biol 2006; 34 (4) 487-495
  • 125 Christie JD, Ma SF, Aplenc R , et al. Variation in the myosin light chain kinase gene is associated with development of acute lung injury after major trauma. Crit Care Med 2008; 36 (10) 2794-2800
  • 126 Wainwright MS, Rossi J, Schavocky J , et al. Protein kinase involved in lung injury susceptibility: evidence from enzyme isoform genetic knockout and in vivo inhibitor treatment. Proc Natl Acad Sci U S A 2003; 100 (10) 6233-6238
  • 127 Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 1995; 146 (5) 1029-1039
  • 128 Thickett DR, Armstrong L, Millar AB. A role for vascular endothelial growth factor in acute and resolving lung injury. Am J Respir Crit Care Med 2002; 166 (10) 1332-1337
  • 129 Abadie Y, Bregeon F, Papazian L , et al. Decreased VEGF concentration in lung tissue and vascular injury during ARDS. Eur Respir J 2005; 25 (1) 139-146
  • 130 Renner W, Kotschan S, Hoffmann C, Obermayer-Pietsch B, Pilger E. A common 936 C/T mutation in the gene for vascular endothelial growth factor is associated with vascular endothelial growth factor plasma levels. J Vasc Res 2000; 37 (6) 443-448
  • 131 Medford AR, Godinho SI, Keen LJ, Bidwell JL, Millar AB. Relationship between vascular endothelial growth factor + 936 genotype and plasma/epithelial lining fluid vascular endothelial growth factor protein levels in patients with and at risk for ARDS. Chest 2009; 136 (2) 457-464
  • 132 Medford AR, Keen LJ, Bidwell JL, Millar AB. Vascular endothelial growth factor gene polymorphism and acute respiratory distress syndrome. Thorax 2005; 60 (3) 244-248
  • 133 Zhai R, Gong MN, Zhou W , et al. Genotypes and haplotypes of the VEGF gene are associated with higher mortality and lower VEGF plasma levels in patients with ARDS. Thorax 2007; 62 (8) 718-722
  • 134 Su L, Zhai R, Sheu CC , et al. Genetic variants in the angiopoietin-2 gene are associated with increased risk of ARDS. Intensive Care Med 2009; 35 (6) 1024-1030
  • 135 Bhandari V, Choo-Wing R, Lee CG , et al. Hyperoxia causes angiopoietin 2-mediated acute lung injury and necrotic cell death. Nat Med 2006; 12 (11) 1286-1293
  • 136 Gallagher DC, Parikh SM, Balonov K , et al. Circulating angiopoietin 2 correlates with mortality in a surgical population with acute lung injury/adult respiratory distress syndrome. Shock 2008; 29 (6) 656-661
  • 137 Mei SH, McCarter SD, Deng Y, Parker CH, Liles WC, Stewart DJ. Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1. PLoS Med 2007; 4 (9) e269
  • 138 Fang X, Neyrinck AP, Matthay MA, Lee JW. Allogeneic human mesenchymal stem cells restore epithelial protein permeability in cultured human alveolar type II cells by secretion of angiopoietin-1. J Biol Chem 2010; 285 (34) 26211-26222
  • 139 Kumpers P, Gueler F, David S , et al. The synthetic tie2 agonist peptide vasculotide protects against vascular leakage and reduces mortality in murine abdominal sepsis. Crit Care 2011; 15 (5) R261
  • 140 David S, Ghosh CC, Kümpers P , et al. Effects of a synthetic PEG-ylated Tie-2 agonist peptide on endotoxemic lung injury and mortality. Am J Physiol Lung Cell Mol Physiol 2011; 300 (6) L851-L862
  • 141 van der Heijden M, van Nieuw Amerongen GP, Chedamni S, van Hinsbergh VW, Johan Groeneveld AB. The angiopoietin-Tie2 system as a therapeutic target in sepsis and acute lung injury. Expert Opin Ther Targets 2009; 13 (1) 39-53
  • 142 Bastarache JA, Fremont RD, Kropski JA, Bossert FR, Ware LB. Procoagulant alveolar microparticles in the lungs of patients with acute respiratory distress syndrome. Am J Physiol Lung Cell Mol Physiol 2009; 297 (6) L1035-L1041
  • 143 McClintock D, Zhuo H, Wickersham N, Matthay MA, Ware LB. Biomarkers of inflammation, coagulation and fibrinolysis predict mortality in acute lung injury. Crit Care 2008; 12 (2) R41
  • 144 Ware LB, Matthay MA, Parsons PE, Thompson BT, Januzzi JL, Eisner MD. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Clinical Trials Network. Pathogenetic and prognostic significance of altered coagulation and fibrinolysis in acute lung injury/acute respiratory distress syndrome. Crit Care Med 2007; 35 (8) 1821-1828
  • 145 Arcaroli J, Sankoff J, Liu N, Allison DB, Maloney J, Abraham E. Association between urokinase haplotypes and outcome from infection-associated acute lung injury. Intensive Care Med 2008; 34 (2) 300-307
  • 146 Adamzik M, Frey UH, Riemann K , et al. Factor V Leiden mutation is associated with improved 30-day survival in patients with acute respiratory distress syndrome. Crit Care Med 2008; 36 (6) 1776-1779
  • 147 Kathiresan S, Gabriel SB, Yang Q , et al. Comprehensive survey of common genetic variation at the plasminogen activator inhibitor-1 locus and relations to circulating plasminogen activator inhibitor-1 levels. Circulation 2005; 112 (12) 1728-1735
  • 148 Eriksson P, Kallin B, van 't Hooft FM, Båvenholm P, Hamsten A. Allele-specific increase in basal transcription of the plasminogen-activator inhibitor 1 gene is associated with myocardial infarction. Proc Natl Acad Sci U S A 1995; 92 (6) 1851-1855
  • 149 Sapru A, Curley MA, Brady S, Matthay MA, Flori H. Elevated PAI-1 is associated with poor clinical outcomes in pediatric patients with acute lung injury. Intensive Care Med 2010; 36 (1) 157-163
  • 150 Sapru A, Hansen H, Ajayi T , et al. 4G/5G polymorphism of plasminogen activator inhibitor-1 gene is associated with mortality in intensive care unit patients with severe pneumonia. Anesthesiology 2009; 110 (5) 1086-1091
  • 151 Tsangaris I, Tsantes A, Bonovas S , et al. The impact of the PAI-1 4G/5G polymorphism on the outcome of patients with ALI/ARDS. Thromb Res 2009; 123 (6) 832-836
  • 152 Madách K, Aladzsity I, Szilágyi A , et al. 4G/5G polymorphism of PAI-1 gene is associated with multiple organ dysfunction and septic shock in pneumonia induced severe sepsis: prospective, observational, genetic study. Crit Care 2010; 14 (2) R79
  • 153 Yende S, Angus DC, Ding J , et al; Health ABC Study. 4G/5G plasminogen activator inhibitor-1 polymorphisms and haplotypes are associated with pneumonia. Am J Respir Crit Care Med 2007; 176 (11) 1129-1137
  • 154 Fink MP. Role of reactive oxygen and nitrogen species in acute respiratory distress syndrome. Curr Opin Crit Care 2002; 8 (1) 6-11
  • 155 Zhu S, Ware LB, Geiser T, Matthay MA, Matalon S. Increased levels of nitrate and surfactant protein a nitration in the pulmonary edema fluid of patients with acute lung injury. Am J Respir Crit Care Med 2001; 163 (1) 166-172
  • 156 Cho HY, Jedlicka AE, Reddy SP, Zhang LY, Kensler TW, Kleeberger SR. Linkage analysis of susceptibility to hyperoxia. Nrf2 is a candidate gene. Am J Respir Cell Mol Biol 2002; 26 (1) 42-51
  • 157 Marzec JM, Christie JD, Reddy SP , et al. Functional polymorphisms in the transcription factor NRF2 in humans increase the risk of acute lung injury. FASEB J 2007; 21 (9) 2237-2246
  • 158 Marczak ED, Marzec J, Zeldin DC , et al. Polymorphisms in the transcription factor NRF2 and forearm vasodilator responses in humans. Pharmacogenet Genomics 2012; 22 (8) 620-628
  • 159 Reddy AJ, Christie JD, Aplenc R, Fuchs B, Lanken PN, Kleeberger SR. Association of human NAD(P)H:quinone oxidoreductase 1 (NQO1) polymorphism with development of acute lung injury. J Cell Mol Med 2009; 13 (8B) 1784-1791
  • 160 Arcaroli JJ, Hokanson JE, Abraham E , et al. Extracellular superoxide dismutase haplotypes are associated with acute lung injury and mortality. Am J Respir Crit Care Med 2009; 179 (2) 105-112
  • 161 Juckett M, Zheng Y, Yuan H , et al. Heme and the endothelium. Effects of nitric oxide on catalytic iron and heme degradation by heme oxygenase. J Biol Chem 1998; 273 (36) 23388-23397
  • 162 Lagan AL, Quinlan GJ, Mumby S , et al. Variation in iron homeostasis genes between patients with ARDS and healthy control subjects. Chest 2008; 133 (6) 1302-1311
  • 163 Sheu CC, Zhai R, Wang Z , et al. Heme oxygenase-1 microsatellite polymorphism and haplotypes are associated with the development of acute respiratory distress syndrome. Intensive Care Med 2009; 35 (8) 1343-1351
  • 164 Saukkonen K, Lakkisto P, Kaunisto MA , et al. Heme oxygenase 1 polymorphisms and plasma concentrations in critically ill patients. Shock 2010; 34 (6) 558-564
  • 165 Wang Z, Beach D, Su L, Zhai R, Christiani DC. A genome-wide expression analysis in blood identifies pre-elafin as a biomarker in ARDS. Am J Respir Cell Mol Biol 2008; 38 (6) 724-732
  • 166 Tejera P, Wang Z, Zhai R , et al. Genetic polymorphisms of peptidase inhibitor 3 (elafin) are associated with acute respiratory distress syndrome. Am J Respir Cell Mol Biol 2009; 41 (6) 696-704
  • 167 Sallenave JM, Shulmann J, Crossley J, Jordana M, Gauldie J. Regulation of secretory leukocyte proteinase inhibitor (SLPI) and elastase-specific inhibitor (ESI/elafin) in human airway epithelial cells by cytokines and neutrophilic enzymes. Am J Respir Cell Mol Biol 1994; 11 (6) 733-741
  • 168 Iwata K, Doi A, Ohji G , et al. Effect of neutrophil elastase inhibitor (sivelestat sodium) in the treatment of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS): a systematic review and meta-analysis. Intern Med 2010; 49 (22) 2423-2432
  • 169 Ma SF, Xie L, Pino-Yanes M , et al. Type 2 deiodinase and host responses of sepsis and acute lung injury. Am J Respir Cell Mol Biol 2011; 45 (6) 1203-1211
  • 170 Leikauf GD, Concel VJ, Liu P , et al. Haplotype association mapping of acute lung injury in mice implicates activin a receptor, type 1. Am J Respir Crit Care Med 2011; 183 (11) 1499-1509
  • 171 Leikauf GD, Pope-Varsalona H, Concel VJ , et al. Functional genomics of chlorine-induced acute lung injury in mice. Proc Am Thorac Soc 2010; 7 (4) 294-296
  • 172 Bein K, Wesselkamper SC, Liu X , et al. Surfactant-associated protein B is critical to survival in nickel-induced injury in mice. Am J Respir Cell Mol Biol 2009; 41 (2) 226-236
  • 173 Leikauf GD, McDowell SA, Bachurski CJ , et al. Functional genomics of oxidant-induced lung injury. Adv Exp Med Biol 2001; 500: 479-487
  • 174 Brown LM, Kallet RH, Matthay MA, Dicker RA. The influence of race on the development of acute lung injury in trauma patients. Am J Surg 2011; 201 (4) 486-491
  • 175 Erickson SE, Shlipak MG, Martin GS , et al; National Institutes of Health National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Network. Racial and ethnic disparities in mortality from acute lung injury. Crit Care Med 2009; 37 (1) 1-6
  • 176 Chapman SJ, Hill AV. Human genetic susceptibility to infectious disease. Nat Rev Genet 2012; 13 (3) 175-188
  • 177 Harris EE, Meyer D. The molecular signature of selection underlying human adaptations. Am J Phys Anthropol 2006; 131 (Suppl. 43) 89-130
  • 178 Mangalmurti NS, Xiong Z, Hulver M , et al. Loss of red cell chemokine scavenging promotes transfusion-related lung inflammation. Blood 2009; 113 (5) 1158-1166
  • 179 Lee JS, Wurfel MM, Matute-Bello G , et al. The Duffy antigen modifies systemic and local tissue chemokine responses following lipopolysaccharide stimulation. J Immunol 2006; 177 (11) 8086-8094
  • 180 London NR, Zhu W, Bozza FA , et al. Targeting Robo4-dependent Slit signaling to survive the cytokine storm in sepsis and influenza. Sci Transl Med 2010; 2 (23) 23ra19