Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2015; 26(13): 1890-1894
DOI: 10.1055/s-0034-1378841
DOI: 10.1055/s-0034-1378841
letter
Facile Access to Benzothiophenes through Metal-Free Iodine-Catalyzed Intermolecular Cyclization of Thiophenols and Alkynes
Further Information
Publication History
Received: 04 April 2015
Accepted after revision: 10 May 2015
Publication Date:
14 July 2015 (online)
Abstract
A novel iodine-catalyzed method for the synthesis of benzothiophene derivatives through cascade reactions of substituted thiophenols with alkynes has been demonstrated under metal- and solvent-free conditions. The present protocol uses inexpensive and environmentally friendly molecular iodine as the catalyst, and the corresponding products are obtained in moderate to excellent yields. Such an efficient, economical, and green transformation should provide an attractive approach to various benzothiophenes within organic and medicinal chemistry.
-
References and Notes
- 1a Gabriele B, Mancuso R, Lupinacci E, Veltri L, Salerno G, Carfagna C. J. Org. Chem. 2011; 76: 8277
- 1b Li L, Mathieu M.-C, Denis D, Therien AG, Wang Z. Bioorg. Med. Chem. Lett. 2011; 21: 734
- 1c Wang S, Beck R, Blench T, Burd A, Buxton S, Malic M, Ayele T, Shaikh S, Chahwala S, Chander C, Holland R, Merette S, Zhao L, Blackney M, Watts A. J. Med. Chem. 2010; 53: 1465
- 1d Mourey RJ, Burnette BL, Brustkern SJ, Daniels JS, Hirsch JL, Hood WF, Meyers MJ, Mnich SJ, Pierce BS, Saabye MJ, Schindler JF, South SA, Webb EG, Zhang JD, Anderson R. J. Pharmacol. Exp. Ther. 2010; 333: 797
- 1e Hrib NJ, Jurcak JG, Bregna DE, Dunn RW, Geyer HM, Hartman HB, Roehr JR, Rogers KL, Rush DK, Szczepanik AM, Szewczak MR, Wilmot CA, Conway PG. J. Med. Chem. 1992; 35: 2712
- 1f Venturelli A, Tondi D, Cancian L, Morandi F, Cannazza G, Segatore B, Prati F, Amicosante G, Shoichet BK, Costi MP. J. Med. Chem. 2007; 50: 5644
- 1g Boschelli DH, Connor DT, Lesch ME, Schrier DJ. Bioorg. Med. Chem. 1996; 4: 557
- 1h Boschelli DH, Kramer JB, Khatana SS, Sorenson RJ, Connor DT, Ferin MA, Wright CD, Lesch ME, Imre K, Okonkwo GC, Schrier DJ, Conroy MC, Ferguson E, Woelle J, Saxena U. J. Med. Chem. 1995; 38: 4597
- 1i Magarian RA, Overacre LB, Singh S, Meyer KL. Curr. Med. Chem. 1994; 1: 61
- 2a Um M.-C, Kwak J, Hong J.-P, Kang J, Yoon DY, Lee SH, Lee C, Hong J.-I. J. Mater. Chem. 2008; 18: 4698
- 2b Gao P, Beckmann D, Tsao HN, Feng X, Enkelmann V, Pisula W, Muellen K. Chem. Commun. 2008; 1548
- 2c Zhou Y, Liu W.-J, Ma Y, Wang H, Qi L, Cao Y, Wang J, Pei J. J. Am. Chem. Soc. 2007; 129: 12386
- 3a Godoi B, Schumacher RF, Zeni G. Chem. Rev. 2011; 111: 2937
- 3b Yang J, Liu S, Zheng J.-F, Zhou J. Eur. J. Org. Chem. 2012; 6248
- 3c Semeniuchenko V, Hassan Z, Villinger A, Langer P. Tetrahedron Lett. 2012; 53: 7135
- 4a Nakamura I, Sato T, Yamamoto Y. Angew. Chem. Int. Ed. 2006; 45: 4473
- 4b Yue D, Larock RC. J. Org. Chem. 2002; 67: 1905
- 4c Sanz R, Guilarte V, Hernando E, Sanjuán AM. J. Org. Chem. 2010; 75: 7443
- 4d Kunz T, Knochel P. Angew. Chem. Int. Ed. 2012; 51: 1958
- 4e Flynn BL, Verdier-Pinard P, Hamel E. Org. Lett. 2001; 3: 651
- 5a Sun L.-L, Deng C.-L, Tang R.-Y, Zhang X.-G. J. Org. Chem. 2011; 76: 7546
- 5b Guilarte V, Fernández-Rodríguez MA, Garíca-García P, Hernando E, Sanz R. Org. Lett. 2011; 13: 5100
- 5c Yu H, Zhang M, Li Y. J. Org. Chem. 2013; 78: 8898
- 5d Kashiki T, Shinamura S, Kohara M, Miyazaki E, Takimiya K, Ikeda M, Kuwabara H. Org. Lett. 2009; 11: 2473
- 6 Undheim K, Lie R. Acta Chem. Scand. 1973; 27: 595
- 7 Liu K, Jia F, Xi H, Li Y, Zheng X, Guo Q, Shen B, Li Z. Org. Lett. 2013; 15: 2026
- 8a Molander GA, Cavalcanti LN. J. Org. Chem. 2011; 76: 7195
- 8b Yuan Y, Thome I, Kim SH, Chen D, Beyer A, Bonnamour J, Zuidema E, Chang S, Bolm C. Adv. Synth. Catal. 2010; 352: 2892
- 8c Kano T, Shirozu F, Maruoka K. J. Am. Chem. Soc. 2013; 135: 18036
- 9 Yang D, Yan K, Wei W, Tian L, Li Q, Shuai Y, You J, Wang H. RSC Adv. 2014; 4: 48547
- 10a Zmitek K, Zupan M, Stavber S, Iskra J. Org. Lett. 2006; 8: 2491
- 10b Pan X, Boussonnière A, Curran DP. J. Am. Chem. Soc. 2013; 135: 14433
- 10c Bartolo G, Raffaella M, Richard CL. Curr. Org. Chem. 2014; 18: 341
- 11 Du HA, Tang RY, Deng CL, Liu Y, Li JH, Zhang XG. Adv. Synth. Catal. 2011; 353: 2739
- 12 Synthesis of Substituted Benzothiophenes; General Procedure: A 25 mL Schlenk tube equipped with a magnetic stirring bar was charged with I2 (12.7 mg, 0.05 mmol), substituted thiol 1 (0.5 mmol) and alkyne 2 (0.75 mmol). The tube was evacuated twice and backfilled with nitrogen, and DTBP (2.5 mmol) was added into the tube under nitrogen atmosphere. The tube was sealed with a balloon and the mixture was stirred under nitrogen atmosphere at 110 °C for 18 h. Upon completion of the reaction, the resulting solution was cooled to r.t., and the solvent was removed with the aid of a rotary evaporator. The residue was purified by column chromatography on silica gel (PE–EtOAc) to give 3. Methyl 3-Phenylbenzo[b]thiophene-2-carboxylate (3a): Compound 3a was obtained according to the general procedure and purified by column chromatography (PE–EtOAc, 30:1). 1H NMR (400 MHz, CDCl3): δ = 7.92 (d, J = 8.0 Hz, 1 H), 7.60 (d, J = 8.0 Hz, 1 H), 7.50–7.57 (m, 4 H), 7.46 (d, J = 8.0 Hz, 2 H), 7.39 (t, J = 8.0 Hz, 1 H), 3.83 (s, 2 H). 13C NMR (100 MHz, CDCl3): δ = 163.0, 144.3, 140.5, 134.6, 129.7, 128.2, 128.1, 127.8, 127.3, 125.4, 124.9, 122.5, 52.3. MS (ESI): m/z = 268.1 [M + Na]+.
For selected examples, see:
For selected examples, see: