Synlett 2015; 26(09): 1269-1275
DOI: 10.1055/s-0034-1380346
letter
© Georg Thieme Verlag Stuttgart · New York

Investigation of the Synthesis of Benzofuroindolines from N-Hydroxyindoles: An O-Arylation/[3,3]-Sigmatropic Rearrangement Sequence

Terry Tomakinian
Univ Paris Sud and CNRS, Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), UMR8182, Equipe Méthodologie, Synthèse & Molécules Thérapeutiques (MS&MT), Bat. 410, 91405 Orsay, France   Email: guillaume.vincent@u-psud.fr
,
Cyrille Kouklovsky
Univ Paris Sud and CNRS, Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), UMR8182, Equipe Méthodologie, Synthèse & Molécules Thérapeutiques (MS&MT), Bat. 410, 91405 Orsay, France   Email: guillaume.vincent@u-psud.fr
,
Guillaume Vincent*
Univ Paris Sud and CNRS, Institut de Chimie Moléculaire et des Matériaux d’Orsay (ICMMO), UMR8182, Equipe Méthodologie, Synthèse & Molécules Thérapeutiques (MS&MT), Bat. 410, 91405 Orsay, France   Email: guillaume.vincent@u-psud.fr
› Author Affiliations
Further Information

Publication History

Received: 22 December 2014

Accepted after revision: 16 February 2015

Publication Date:
01 April 2015 (online)


Dedicated to Dr. Patrick Y. S. Lam

Abstract

We report the demonstration that sensitive N-hydroxyindoles can be O-arylated under transition-metal-free conditions with biaryliodonium salts. The subsequent spontaneous [3,3]-sigmatropic rearrangement delivers benzofuroindolines derived from tryptamine. We also describe the practical synthesis of N-hydroxyindoles by oxidation of indolines with m-CPBA.

Supporting Information

 
  • References and Notes

  • 5 Denizot N, Pouilhès A, Cucca M, Beaud R, Guillot R, Kouklovsky C, Vincent G. Org. Lett. 2014; 16: 5752
  • 6 Tomakinian T, Guillot R, Kouklovsky C, Vincent G. Angew. Chem. Int. Ed. 2014; 53: 11881
  • 7 Our hydroarylation does not proceed when nitrogen functionality is present on the C3-side chain of the indole and the generation of 3-iodoindolines requires 2,3-disubstituted indoles.
    • 8a For a review on electrophilic indole derivatives, see: Bandini M. Org. Biomol. Chem. 2013; 11: 5206
    • 8b For a review on dearomatization of indoles, see: Roche SP, Youte Tendoung J.-J, Tréguier B. Tetrahedron 2015; doi: 10.1016/j.tet.2014.06.054
  • 11 The DMDO-mediated oxidation of an indoline into an N-hydroxyindole related to the stephacidins was reported: Hafensteiner BD, Escribano M, Petricci E, Baran PS. Bioorg. Med. Chem. Lett. 2009; 19: 3808
  • 12 General Procedure for the Synthesis of N-Hydroxyindoles 10: Et3SiH (1.12 mL, 7.00 mmol, 2 equiv) was added to a solution of N-acetyltryptamine 11a (700 mg, 3.50 mmol, 1 equiv) in TFA (10 mL) and the mixture was stirred at 60 °C for 24 h. After evaporation of the solvent, the crude product was made basic by adding sat. NaHCO3 under ice cooling and the mixture was extracted with CH2Cl2–MeOH (95:5). The extract was washed with brine, dried over MgSO4, filtered and evaporated under reduced pressure. Purification by column chromatography using EtOAc–MeOH (95:5) afforded the indoline as a yellow oil (528 mg, 2.59 mmol, 74%). This indoline (400 mg, 1.96 mmol, 1 equiv) in MeOH (1.5 mL) was added dropwise to a solution of 70% m-CPBA (675 mg, 3.91 mmol, 1.4 equiv) in MeOH (1.5 mL) at 0 °C. The mixture was then warmed slowly to r.t. and stirred for 12 h. Flash column chromatography purification (100% EtOAc) led to N-hydroxyindole 10a as a white solid (364 mg, 1.67 mmol, 85%); Rf = 0.41 (MeOH–EtOAc, 5:95). N-Hydroxyindole 10a: 1H NMR (250 MHz, MeOD): δ = 8.07 (br s, 1 H), 7.52 (d, J = 9.5 Hz, 1 H), 7.34 (d, J = 9.5 Hz, 1 H), 7.14 (t, J = 6.7 Hz, 1 H), 7.11 (s, 1 H), 7.00 (t, J = 6.6 Hz, 1 H), 3.44 (t, J = 7.2 Hz, 2 H), 2.90 (t, J = 7.3 Hz, 2 H), 1.91 (s, 3 H). 13C NMR (90 MHz, MeOD): δ = 173.4, 135.8, 125.2, 124.5, 122.8, 119.8, 119.6, 109.4, 108.9, 41.7, 26.1, 22.7. IR (KBr): 3250, 3105, 1680, 1619, 1602, 1580, 743 cm–1. HRMS (ESI+): m/z [M + H]+ calcd for [C12H15N2O2]+: 219.1089; found: 219.1128. General Procedure for the Synthesis of Benzofuroindolines 9: To a solution of N-hydroxyindole 10a (50 mg, 0.229 mmol, 1 equiv) in MeOH (1 mL), K2CO3 (45 mg, 0.326 mmol, 1.4 equiv) and then Ph2IOTf 23a (153 mg, 0.356 mmol, 1.5 equiv) were added at 0 °C and the reaction mixture was stirred for 2 h at 0 °C. Flash column chromatography purification (cyclohexane–EtOAc: 60:40 → 40:60) led to 25a (14 mg of pyrroloindoline, 20%) and 70 mg of a (1:0.7:0.4 ratio) mixture of benzofuroindoline 9a (44%), indoles 11a and 24a (36%). Preparative TLC on silica gel (MeOH–EtOAc, 5:95) of the mixture allowed the isolation of benzofuroindoline 9a as a single product. Benzofuroindoline 9a: Rf = 0.37 (MeOH–EtOAc, 5:95). 1H NMR (250 MHz, CDCl3): δ = 7.28 (d, J = 7.2 Hz, 1 H), 7.18 (d, J = 7.3 Hz, 1 H), 7.06 (q, J = 7.9 Hz, 2 H), 6.87 (t, J = 7.0 Hz, 1 H), 6.77 (t, J = 7.2 Hz, 2 H), 6.65 (d, J = 7.9 Hz, 1 H), 6.27 (d, J = 2.5 Hz, 1 H), 5.25 (br s, 1 H, N H), 3.20 (q, J = 6.7 Hz, 2 H), 2.25–2.40 (m, 2 H), 1.79 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 170.7, 158.7, 155.8, 147.5, 136.6, 128.6, 123.0, 122.3, 121.3, 119.8, 115.8, 110.0, 109.8, 101.8, 59.1, 36.6, 35.5, 23.3. IR (NaCl): 3033, 2960, 1691, 1599, 1492, 1426, 1378, 912, 753 cm–1. HRMS (ESI+): m/z [M + H]+ calcd for [C18H19N2O2]+: 295.1441; found: 295.1447.
  • 15 Wang H.-Y, Anderson LL. Org. Lett. 2013; 15: 3362
  • 17 Ueda M, Ito Y, Ichii Y, Kakiuchi M, Shono H, Miyata O. Chem. Eur. J. 2014; 20: 6763
  • 18 Gao H, Xu Q.-L, Keene C, Kürti L. Chem. Eur. J. 2014; 20: 8883
  • 20 Wang H.-Y, Mueller DS, Sachwani RM, Kapadia R, Londino HN, Anderson LL. J. Org. Chem. 2011; 76: 3203
  • 21 Gao H, Ess DH, Yousufuddin M, Kürti L. J. Am. Chem. Soc. 2013; 135: 7081
  • 22 Jalalian N, Petersen TB, Olofsson B. Chem. Eur. J. 2012; 18: 14140
  • 24 De P, ; Nonappa Pandurangan K, Maitra U, Wailes S. Org. Lett. 2007; 9: 2767
  • 26 Lin DW, Masuda T, Biskup MB, Nelson JD, Baran P. J. Org. Chem. 2011; 76: 1013