Subscribe to RSS
DOI: 10.1055/s-0034-1380435
Selective C–Si Bond Formation through C–H Functionalization
Publication History
Received: 09 April 2015
Accepted after revision: 29 May 2015
Publication Date:
09 July 2015 (online)
Abstract
Silylation of hydrocarbons is one of the most important transformations due to the diverse application of organosilanes. Continuous progress is being made in organosilane synthesis particularly through direct C–H activation/functionalization. This minireview compiles various processes reported for C–Si bond formation from 2000–2014, through C–H activation/functionalization (proximal and remote) and metal-free approaches.
1 Introduction
2 C–Si Bond Formation through C–H Activation in Intermolecular Fashion
2.1 C–Si Bond Formation through Direct C(sp2)–H Activation
2.2 C–Si Bond Formation through Directing Group Assisted C(sp2)–H Activation
2.3 C–Si Bond Formation through sp3 C–H Activation
3 C–Si Bond Formation through Proximal C–H Activation/Functionalization in Intramolecular Fashion
3.1 Intramolecular C–Si Bond Formation through C(sp2)–H Activation
3.2 Intramolecular C–Si Bond Formation through C(sp3)–H Activation
4 Siloles Synthesis through Heteroannulation
5 C–Si Bond Formation through Remote C–H Activation
6 C–Si Bond Formation through C–O Bond Cleavage
7 Metal-Free Methods for C–Si Bond Formation
8 Summary and Outlook
-
References
- 1a Bains W, Tacke R. Curr. Opin. Drug Discovery Dev. 2003; 6: 526
- 1b Showell GA, Mills JS. Drug Discovery Today 2003; 551
- 1c Wang J, Ma C, Wu Y, Lamb RA, Pinto LH, DeGrado WF. J. Am. Chem. Soc. 2011; 133: 13844
- 2a Mark JE. Acc. Chem. Res. 2004; 37: 946
- 2b Kawahara K, Hagiwara Y, Kuroda K. Chem. Eur. J. 2011; 17: 13188
- 2c Jones RG, Ando W, Chojnowski J. Silicon-Containing Polymers: The Science and Technology of Their Synthesis and Applications. Kluwer Academic; Dordrecht: 2000
- 3a Panek M, Masse CE. Chem. Rev. 1995; 95: 1293
- 3b Langkopf E, Schinzer D. Chem. Rev. 1995; 95: 1375
- 3c Fleming I, Barbero A, Walter D. Chem. Rev. 1997; 97: 2063
- 4a Waterman R, Hayes PG, Tilley TD. Acc. Chem. Res. 2007; 40: 712
- 4b Blom B, Stoelzel M, Driess M. Chem. Eur. J. 2013; 19: 40
- 4c Gallego D, Brück A, Irran E, Meier F, Kaupp M, Driess M, Hartwig JF. J. Am. Chem. Soc. 2013; 135: 15617
- 5a Li L, Zhang Y, Gao L, Song Z. Tetrahedron Lett. 2015; 56: 1466
- 5b Denmark SE, Sweis RF. Organosilicon Compounds in Cross-Coupling Reactions . In Metal-Catalyzed Cross-Coupling Reactions . Vol. 1. de Meijere A, Diederich F. Chap. Wiley-VCH; Weinheim: 2004
- 5c Denmark SE, Regens CS. Acc. Chem. Res. 2008; 41: 1486
- 5d Braunstein P, Knorr M. J. Organomet. Chem. 1995; 500: 21
- 6a Connolly JW, Urry G. J. Org. Chem. 1964; 29: 619
- 6b Marciniec B. Comprehensive Handbook of Hydrosilylation . Pergamon; New York: 1992
- 6c Lewis KM, Rethwisch DG. Catalyzed Direct Reactions of Silicon . Elsevier; New York: 1993
- 6d Missaghi MN, Downing CM, Kung MC, Kung HH. Organometallics 2008; 27: 6364
- 7a Rochow EG. J. Am. Chem. Soc. 1945; 67: 963
- 7b Lewis KM, Rethwisch DG. Catalyzed Direct Reactions of Silicon . Elsevier; New York: 1993
- 8 Marciniec B. Comprehensive Handbook of Hydrosilylation . Pergamon; New York: 1992
- 9a Barry AJ. US 2,499,561, 1950
- 9b Barry AJ. US 2,626,269, 1953
- 9c Barry AJ, Gilkey JW, Hook DE. Metal-Organic Compounds . ACS Advances in Chemistry Series 23; Washington: 1959
- 10a Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
- 10b Sharma U, Modak A, Maity S, Maji A, Maiti D. Direct Arylation via C–H Activation . In Introduction to New Trends in Cross-Coupling: Theory and Applications . Colacot T. RSC; Cambridge: 2014. Chap. 12, 551
- 10c Wu Y, Wang J, Mao F, Kwong FY. Chem. Asian J. 2014; 9: 26
- 11 Sakakura T, Tokunaga Y, Sodeyama T, Tanaka M. Chem. Lett. 1987; 2375
- 12 Ezbiansky K, Djurovich PI, Laforest M, Sinning DJ, Zayes R, Berry DH. Organometallics 1998; 17: 1455
- 13 Ishiyama T, Sato K, Nishio Y, Miyaura N. Angew. Chem. Int. Ed. 2003; 42: 5346
- 14 Ishiyama T, Sato K, Nishio Y, Saiki T, Miyaura N. Chem. Commun. 2005; 5065
- 15 Saiki T, Nishio Y, Ishiyama T, Miyaura N. Organometallics 2006; 25: 6068
- 16 Tsukada N, Hartwig JF. J. Am. Chem. Soc. 2005; 127: 5022
- 17 Klare HF. T, Oestreich M, Ito J, Nishiyama H, Ohki Y, Tatsumi K. J. Am. Chem. Soc. 2011; 133: 3312
- 18 Murai M, Takami K, Takai K. Chem. Eur. J. 2015; 21: 4566
- 19 Sasaki M, Kondo Y. Org. Lett. 2015; 17: 848
- 20 Kakiuchi F, Matsumoto M, Sonoda M, Fukuyama T, Chatani N, Murai S, Furukawa N, Seki Y. Chem. Lett. 2000; 750
- 21 Kakiuchi F, Igi K, Matsumoto M, Chatani N, Murai S. Chem. Lett. 2001; 422
- 22 Kakiuchi F, Igi K, Matsumoto M, Hayamizu T, Chatani N, Murai S. Chem. Lett. 2002; 396
- 23 Kakiuchi F, Matsumoto M, Tsuchiya K, Igi K, Hayamizu T, Chatani N, Murai S. J. Organomet. Chem. 2003; 686: 134
- 24 Tobisu M, Ano Y, Chatani N. Chem. Asian J. 2008; 3: 1585
- 25 Ihara H, Suginome M. J. Am. Chem. Soc. 2009; 131: 7502
- 26 Simmons EM, Hartwig JF. J. Am. Chem. Soc. 2010; 132: 17092
- 27 Li Q, Driess M, Hartwig JF. Angew. Chem. Int. Ed. 2014; 53: 8471
- 28 Choi G, Tsurugi H, Mashima K. J. Am. Chem. Soc. 2013; 135: 13149
- 29 Kanyiva KS, Kuninobu Y, Kanai M. Org. Lett. 2014; 16: 1968
- 30 Xiao Q, Meng X, Kanai M, Kuninobu Y. Angew. Chem. Int. Ed. 2014; 53: 3168
- 31 Hua Y, Asgari P, Dakarapu US, Jeon J. Chem. Commun. 2015; 51: 3778
- 32 Kakiuchi F, Tsuchiya K, Matsumoto M, Mizushima E, Chatani N. J. Am. Chem. Soc. 2004; 126: 12792
- 33 Mita T, Michigami K, Sato Y. Org. Lett. 2012; 14: 3462
- 34 Mita T, Michigami K, Sato Y. Chem. Asian J. 2013; 8: 2970
- 35 Li B, Driess M, Hartwig JF. Nature (London) 2014; 483: 70
- 36 Li B, Driess M, Hartwig JF. J. Am. Chem. Soc. 2014; 136: 6586
- 37a Yamaguchi S, Tamao K. J. Organomet. Chem. 2002; 653: 223
- 37b Hissler M, Dyer PW, Réau R. Coord. Chem. Rev. 2003; 244: 1
- 37c Yamaguchi S, Xu C, Okamoto T. Pure Appl. Chem. 2006; 78: 721
- 37d Corey JY. Adv. Organomet. Chem. 2011; 59: 181
- 38 Corey JY. Synthesis of Siloles (and Germoles) that Exhibit the AIE Effect. In Aggregation-Induced Emission: Fundamentals. Qin A, Tang BZ. Wiley; Chichester: 2013. Chap. 1
- 39 Ureshino T, Takuya T, Kuninobu Y, Takai K. J. Am. Chem. Soc. 2010; 132: 14324
- 40 Kuninobu Y, Yamauchi K, Tamura N, Seiki T, Takai K. Angew. Chem. Int. Ed. 2013; 52: 1520
- 41 Kuznetsov A, Gevorgyan V. Org. Lett. 2012; 14: 914
- 42 Kuznetsov A, Onishi Y, Inamoto Y, Gevorgyan V. Org. Lett. 2013; 15: 2498
- 43 Kuninobu Y, Nakahara T, Takeshima H, Takai K. Org. Lett. 2013; 15: 426
- 44a Tobisu M, Onoe M, Kita Y, Chatani N. J. Am. Chem. Soc. 2009; 131: 7506
- 44b Onoe M, Baba K, Kim Y, Kita Y, Tobisu M, Chatani N. J. Am. Chem. Soc. 2012; 134: 19477
- 45 Liang Y, Zhang S, Xi Z. J. Am. Chem. Soc. 2011; 133: 9204
- 46 Liang Y, Geng W, Wei J, Xi Z. Angew. Chem. Int. Ed. 2012; 51: 1934
- 47 Cheng C, Hartwig JF. Science (Washington, D.C.) 2014; 343: 853
- 48 Cheng C, Hartwig JF. J. Am. Chem. Soc. 2014; 136: 12064
- 49 Cheng C, Hartwig JF. J. Am. Chem. Soc. 2015; 137: 592
- 50 Zarate C, Martin R. J. Am. Chem. Soc. 2014; 136: 2236
- 51 Furukawa S, Kobayashi J, Kawashima T. J. Am. Chem. Soc. 2009; 131: 14192
- 52 Furukawa S, Kobayashi J, Kawashima T. Dalton Trans. 2010; 39: 9329
- 53 Curless LD, Ingleson MJ. Organometallics 2014; 33: 7241
- 54 O’Brien JM, Hoveyda AH. J. Am. Chem. Soc. 2011; 133: 7712
- 55 Ito H, Horita Y, Yamamoto E. Chem. Commun. 2012; 48: 8006
- 56a Ohmura T, Suginome M. Bull. Chem. Soc. Jpn. 2009; 82: 29
- 56b Beletskaya I, Moberg C. Chem. Rev. 1999; 99: 3435
- 57 Wang L, Zhu H, Guo S, Cheng J, Yu J.-T. Chem. Commun. 2014; 50: 10864
- 58 Gandhamsetty N, Joung S, Park S.-W, Park S, Chang S. J. Am. Chem. Soc. 2014; 136: 16780
- 59 During the preparation of this review, an excellent review on the same topic appeared in the literature, see: Cheng C, Hartwig JF. Chem. Rev. 2015; DOI: 10.1021/cr5006414