Subscribe to RSS
DOI: 10.1055/s-0035-1549098
Applications of Optical Coherence Tomography in Pediatric Clinical Neuroscience
Publication History
29 December 2014
26 February 2015
Publication Date:
24 March 2015 (online)
Abstract
For nearly two centuries, the ophthalmoscope has permitted examination of the retina and optic nerve—the only axons directly visualized by the physician. The retinal ganglion cells project their axons, which travel along the innermost retina to form the optic nerve, marking the beginning of the anterior visual pathway. Both the structure and function of the visual pathway are essential components of the neurologic examination as it can be involved in numerous acquired, congenital and genetic central nervous system conditions. The development of optical coherence tomography now permits the pediatric neuroscientist to visualize and quantify the optic nerve and retinal layers with unprecedented resolution. As optical coherence tomography becomes more accessible and integrated into research and clinical care, the pediatric neuroscientist may have the opportunity to utilize and/or interpret results from this device. This review describes the basic technical features of optical coherence tomography and highlights its potential clinical and research applications in pediatric clinical neuroscience including optic nerve swelling, optic neuritis, tumors of the visual pathway, vigabatrin toxicity, nystagmus, and neurodegenerative conditions.
-
References
- 1 Huang D, Swanson EA, Lin CP , et al. Optical coherence tomography. Science 1991; 254 (5035) 1178-1181
- 2 Schuman JS, Hee MR, Puliafito CA , et al. Quantification of nerve fiber layer thickness in normal and glaucomatous eyes using optical coherence tomography. Arch Ophthalmol 1995; 113 (5) 586-596
- 3 Garway-Heath DF, Poinoosawmy D, Fitzke FW, Hitchings RA. Mapping the visual field to the optic disc in normal tension glaucoma eyes. Ophthalmology 2000; 107 (10) 1809-1815
- 4 Yanni SE, Wang J, Cheng CS , et al. Normative reference ranges for the retinal nerve fiber layer, macula, and retinal layer thicknesses in children. Am J Ophthalmol 2013; 155 (2) 354-360
- 5 Turk A, Ceylan OM, Arici C , et al. Evaluation of the nerve fiber layer and macula in the eyes of healthy children using spectral-domain optical coherence tomography. Am J Ophthalmol 2012; 153 (3) 552-559
- 6 Avery RA, Cnaan A, Schuman JS , et al. Reproducibility of circumpapillary retinal nerve fiber layer measurements using handheld optical coherence tomography in sedated children. Am J Ophthalmol 2014; 158 (4) 780-787
- 7 Avery RA, Cnaan A, Schuman JS , et al. Intra- and inter-visit reproducibility of ganglion cell-inner plexiform layer measurements using handheld optical coherence tomography in children with optic pathway gliomas. Am J Ophthalmol 2014; 158 (5) 916-923
- 8 Syc SB, Warner CV, Hiremath GS , et al. Reproducibility of high-resolution optical coherence tomography in multiple sclerosis. Mult Scler 2010; 16 (7) 829-839
- 9 Altemir I, Pueyo V, Elía N, Polo V, Larrosa JM, Oros D. Reproducibility of optical coherence tomography measurements in children. Am J Ophthalmol 2013; 155 (1) 171-176
- 10 Langenegger SJ, Funk J, Töteberg-Harms M. Reproducibility of retinal nerve fiber layer thickness measurements using the eye tracker and the retest function of Spectralis SD-OCT in glaucomatous and healthy control eyes. Invest Ophthalmol Vis Sci 2011; 52 (6) 3338-3344
- 11 Serbecic N, Beutelspacher SC, Aboul-Enein FC, Kircher K, Reitner A, Schmidt-Erfurth U. Reproducibility of high-resolution optical coherence tomography measurements of the nerve fibre layer with the new Heidelberg Spectralis optical coherence tomography. Br J Ophthalmol 2011; 95 (6) 804-810
- 12 Gu S, Glaug N, Cnaan A, Packer RJ, Avery RA. Ganglion cell layer-inner plexiform layer thickness and vision loss in young children with optic pathway gliomas. Invest Ophthalmol Vis Sci 2014; 55 (3) 1402-1408
- 13 Walter SD, Ishikawa H, Galetta KM , et al. Ganglion cell loss in relation to visual disability in multiple sclerosis. Ophthalmology 2012; 119 (6) 1250-1257
- 14 Kardon RH. Role of the macular optical coherence tomography scan in neuro-ophthalmology. J Neuroophthalmol 2011; 31 (4) 353-361
- 15 Barboni P, Savini G, Cascavilla ML , et al. Early macular retinal ganglion cell loss in dominant optic atrophy: genotype-phenotype correlation. Am J Ophthalmol 2014; 158 (3) 628-36
- 16 Aggarwal D, Tan O, Huang D, Sadun AA. Patterns of ganglion cell complex and nerve fiber layer loss in nonarteritic ischemic optic neuropathy by Fourier-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2012; 53 (8) 4539-4545
- 17 Lee H, Sheth V, Bibi M , et al. Potential of handheld optical coherence tomography to determine cause of infantile nystagmus in children by using foveal morphology. Ophthalmology 2013; 120 (12) 2714-2724
- 18 Rajjoub RD, Trimboli-Heidler C, Packer RJ, Avery RA. Reproducibility of retinal nerve fiber layer thickness measures using eye tracking in children with nonglaucomatous optic neuropathy. Am J Ophthalmol 2015; 159 (1) 71-77
- 19 Avery RA, Hwang EI, Ishikawa H , et al. Handheld optical coherence tomography during sedation in young children with optic pathway gliomas. JAMA Ophthalmol 2014; 132 (3) 265-271
- 20 Moreno TA, O'Connell RV, Chiu SJ , et al. Choroid development and feasibility of choroidal imaging in the preterm and term infants utilizing SD-OCT. Invest Ophthalmol Vis Sci 2013; 54 (6) 4140-4147
- 21 Cabrera MT, O'Connell RV, Toth CA , et al. Macular findings in healthy full-term Hispanic newborns observed by hand-held spectral-domain optical coherence tomography. Ophthalmic Surg Lasers Imaging Retina 2013; 44 (5) 448-454
- 22 Cabrera MT, Maldonado RS, Toth CA , et al. Subfoveal fluid in healthy full-term newborns observed by handheld spectral-domain optical coherence tomography. Am J Ophthalmol 2012; 153 (1) 167-75
- 23 Maldonado RS, O'Connell RV, Sarin N , et al. Dynamics of human foveal development after premature birth. Ophthalmology 2011; 118 (12) 2315-2325
- 24 Maldonado RS, Izatt JA, Sarin N , et al. Optimizing hand-held spectral domain optical coherence tomography imaging for neonates, infants, and children. Invest Ophthalmol Vis Sci 2010; 51 (5) 2678-2685
- 25 Chavala SH, Farsiu S, Maldonado R, Wallace DK, Freedman SF, Toth CA. Insights into advanced retinopathy of prematurity using handheld spectral domain optical coherence tomography imaging. Ophthalmology 2009; 116 (12) 2448-2456
- 26 Gerth C, Zawadzki RJ, Héon E, Werner JS. High-resolution retinal imaging in young children using a handheld scanner and Fourier-domain optical coherence tomography. J AAPOS 2009; 13 (1) 72-74
- 27 Gerth C, Zawadzki RJ, Werner JS, Héon E. Retinal morphology in patients with BBS1 and BBS10 related Bardet-Biedl Syndrome evaluated by Fourier-domain optical coherence tomography. Vision Res 2008; 48 (3) 392-399
- 28 Muni RH, Kohly RP, Charonis AC, Lee TC. Retinoschisis detected with handheld spectral-domain optical coherence tomography in neonates with advanced retinopathy of prematurity. Arch Ophthalmol 2010; 128 (1) 57-62
- 29 Muni RH, Kohly RP, Sohn EH, Lee TC. Hand-held spectral domain optical coherence tomography finding in shaken-baby syndrome. Retina 2010; 30 (4, Suppl): S45-S50
- 30 Lee H, Proudlock F, Gottlob I. Is handheld optical coherence tomography reliable in infants and young children with and without nystagmus?. Invest Ophthalmol Vis Sci 2013; 54 (13) 8152-8159
- 31 Fard MA, Fakhree S, Abdi P, Hassanpoor N, Subramanian PS. Quantification of peripapillary total retinal volume in pseudopapilledema and mild papilledema using spectral-domain optical coherence tomography. Am J Ophthalmol 2014; 158 (1) 136-143
- 32 Auinger P, Durbin M, Feldon S , et al; OCT Sub-Study Committee for NORDIC Idiopathic Intracranial Hypertension Study Group. Baseline OCT measurements in the idiopathic intracranial hypertension treatment trial, part I: quality control, comparisons, and variability. Invest Ophthalmol Vis Sci 2014; 55 (12) 8180-8188
- 33 Wang JK, Kardon RH, Kupersmith MJ, Garvin MK. Automated quantification of volumetric optic disc swelling in papilledema using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2012; 53 (7) 4069-4075
- 34 Sibony P, Kupersmith MJ, Rohlf FJ. Shape analysis of the peripapillary RPE layer in papilledema and ischemic optic neuropathy. Invest Ophthalmol Vis Sci 2011; 52 (11) 7987-7995
- 35 Kupersmith MJ, Sibony P, Mandel G, Durbin M, Kardon RH. Optical coherence tomography of the swollen optic nerve head: deformation of the peripapillary retinal pigment epithelium layer in papilledema. Invest Ophthalmol Vis Sci 2011; 52 (9) 6558-6564
- 36 Kulkarni KM, Pasol J, Rosa PR, Lam BL. Differentiating mild papilledema and buried optic nerve head drusen using spectral domain optical coherence tomography. Ophthalmology 2014; 121 (4) 959-963
- 37 Lee KM, Woo SJ, Hwang JM. Differentiation of optic nerve head drusen and optic disc edema with spectral-domain optical coherence tomography. Ophthalmology 2011; 118 (5) 971-977
- 38 Wall M, McDermott MP, Kieburtz KD , et al; NORDIC Idiopathic Intracranial Hypertension Study Group Writing Committee. Effect of acetazolamide on visual function in patients with idiopathic intracranial hypertension and mild visual loss: the idiopathic intracranial hypertension treatment trial. JAMA 2014; 311 (16) 1641-1651
- 39 Merchant KY, Su D, Park SC , et al. Enhanced depth imaging optical coherence tomography of optic nerve head drusen. Ophthalmology 2013; 120 (7) 1409-1414
- 40 Moss HE, Treadwell G, Wanek J, DeLeon S, Shahidi M. Retinal vessel diameter assessment in papilledema by semi-automated analysis of SLO images: feasibility and reliability. Invest Ophthalmol Vis Sci 2014; 55 (4) 2049-2054
- 41 Auinger P, Durbin M, Feldon S , et al; OCT Sub-Study Committee for NORDIC Idiopathic Intracranial Hypertension Study Group. Baseline OCT measurements in the idiopathic intracranial hypertension treatment trial, part II: correlations and relationship to clinical features. Invest Ophthalmol Vis Sci 2014; 55 (12) 8173-8179
- 42 Costello F, Coupland S, Hodge W , et al. Quantifying axonal loss after optic neuritis with optical coherence tomography. Ann Neurol 2006; 59 (6) 963-969
- 43 Petzold A, de Boer JF, Schippling S , et al. Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol 2010; 9 (9) 921-932
- 44 Jindahra P, Petrie A, Plant GT. Retrograde trans-synaptic retinal ganglion cell loss identified by optical coherence tomography. Brain 2009; 132 (Pt 3): 628-634
- 45 Gordon-Lipkin E, Chodkowski B, Reich DS , et al. Retinal nerve fiber layer is associated with brain atrophy in multiple sclerosis. Neurology 2007; 69 (16) 1603-1609
- 46 Yeh EA, Weinstock-Guttman B, Lincoff N , et al. Retinal nerve fiber thickness in inflammatory demyelinating diseases of childhood onset. Mult Scler 2009; 15 (7) 802-810
- 47 Waldman AT, Hiremath G, Avery RA , et al. Monocular and binocular low-contrast visual acuity and optical coherence tomography in pediatric multiple sclerosis. Mult Scler Relat Disord 2013; 3 (3) 326-334
- 48 Yilmaz Ü, Gücüyener K, Erin DM , et al. Reduced retinal nerve fiber layer thickness and macular volume in pediatric multiple sclerosis. J Child Neurol 2012; 27 (12) 1517-1523
- 49 Talman LS, Bisker ER, Sackel DJ , et al. Longitudinal study of vision and retinal nerve fiber layer thickness in multiple sclerosis. Ann Neurol 2010; 67 (6) 749-760
- 50 Huhn K, Lämmer R, Oberwahrenbrock T , et al. Optical coherence tomography in patients with a history of juvenile multiple sclerosis reveals early retinal damage. Eur J Neurol 2015; 22 (1) 86-92
- 51 Saidha S, Syc SB, Durbin MK , et al. Visual dysfunction in multiple sclerosis correlates better with optical coherence tomography derived estimates of macular ganglion cell layer thickness than peripapillary retinal nerve fiber layer thickness. Mult Scler 2011; 17 (12) 1449-1463
- 52 Garcia-Martin E, Polo V, Larrosa JM , et al. Retinal layer segmentation in patients with multiple sclerosis using spectral domain optical coherence tomography. Ophthalmology 2014; 121 (2) 573-579
- 53 Yeh EA, Marrie RA, Reginald YA , et al; Canadian Pediatric Demyelinating Disease Network. Functional-structural correlations in the afferent visual pathway in pediatric demyelination. Neurology 2014; 83 (23) 2147-2152
- 54 Saidha S, Sotirchos ES, Oh J , et al. Relationships between retinal axonal and neuronal measures and global central nervous system pathology in multiple sclerosis. JAMA Neurol 2013; 70 (1) 34-43
- 55 Bennett J, de Seze J, Lana-Peixoto M , et al; with the GJCF-ICC&BR. Neuromyelitis optica and multiple sclerosis: Seeing differences through optical coherence tomography. Mult Scler 2015; ; In press
- 56 Avery RA, Fisher MJ, Liu GT. Optic pathway gliomas. J Neuroophthalmol 2011; 31 (3) 269-278
- 57 Costello F, Van Stavern GP. Should optical coherence tomography be used to manage patients with multiple sclerosis?. J Neuroophthalmol 2012; 32 (4) 363-371
- 58 Saidha S, Syc SB, Ibrahim MA , et al. Primary retinal pathology in multiple sclerosis as detected by optical coherence tomography. Brain 2011; 134 (Pt 2): 518-533
- 59 Gelfand JM, Nolan R, Schwartz DM, Graves J, Green AJ. Microcystic macular oedema in multiple sclerosis is associated with disease severity. Brain 2012; 135 (Pt 6) 1786-1793
- 60 Saidha S, Sotirchos ES, Ibrahim MA , et al. Microcystic macular oedema, thickness of the inner nuclear layer of the retina, and disease characteristics in multiple sclerosis: a retrospective study. Lancet Neurol 2012; 11 (11) 963-972
- 61 Gorman MP, Healy BC, Polgar-Turcsanyi M, Chitnis T. Increased relapse rate in pediatric-onset compared with adult-onset multiple sclerosis. Arch Neurol 2009; 66 (1) 54-59
- 62 Waubant E, Chabas D, Okuda DT , et al. Difference in disease burden and activity in pediatric patients on brain magnetic resonance imaging at time of multiple sclerosis onset vs adults. Arch Neurol 2009; 66 (8) 967-971
- 63 Danesh-Meyer HV, Papchenko T, Savino PJ, Law A, Evans J, Gamble GD. In vivo retinal nerve fiber layer thickness measured by optical coherence tomography predicts visual recovery after surgery for parachiasmal tumors. Invest Ophthalmol Vis Sci 2008; 49 (5) 1879-1885
- 64 Dalla Via P, Opocher E, Pinello ML , et al. Visual outcome of a cohort of children with neurofibromatosis type 1 and optic pathway glioma followed by a pediatric neuro-oncology program. Neuro-oncol 2007; 9 (4) 430-437
- 65 Fisher MJ, Loguidice M, Gutmann DH , et al. Visual outcomes in children with neurofibromatosis type 1-associated optic pathway glioma following chemotherapy: a multicenter retrospective analysis. Neuro-oncol 2012; 14 (6) 790-797
- 66 Avery RA, Liu GT, Fisher MJ , et al. Retinal nerve fiber layer thickness in children with optic pathway gliomas. Am J Ophthalmol 2011; 151 (3) 542-549
- 67 Avery RA, Bouffet E, Packer RJ, Reginald A. Feasibility and comparison of visual acuity testing methods in children with neurofibromatosis type 1 and/or optic pathway gliomas. Invest Ophthalmol Vis Sci 2013; 54 (2) 1034-1038
- 68 Lux AL, Edwards SW, Hancock E , et al. The United Kingdom Infantile Spasms Study comparing vigabatrin with prednisolone or tetracosactide at 14 days: a multicentre, randomised controlled trial. Lancet 2004; 364 (9447) 1773-1778
- 69 Plant GT, Sergott RC. Understanding and interpreting vision safety issues with vigabatrin therapy. Acta Neurol Scand Suppl 2011; (192) 57-71
- 70 Sergott RC. Recommendations for visual evaluations of patients treated with vigabatrin. Curr Opin Ophthalmol 2010; 21 (6) 442-446
- 71 Miller NR, Johnson MA, Paul SR , et al. Visual dysfunction in patients receiving vigabatrin: clinical and electrophysiologic findings. Neurology 1999; 53 (9) 2082-2087
- 72 Wild JM, Robson CR, Jones AL, Cunliffe IA, Smith PE. Detecting vigabatrin toxicity by imaging of the retinal nerve fiber layer. Invest Ophthalmol Vis Sci 2006; 47 (3) 917-924
- 73 Lawthom C, Smith PE, Wild JM. Nasal retinal nerve fiber layer attenuation: a biomarker for vigabatrin toxicity. Ophthalmology 2009; 116 (3) 565-571
- 74 Clayton LM, Devile M, Punte T , et al. Patterns of peripapillary retinal nerve fiber layer thinning in vigabatrin-exposed individuals. Ophthalmology 2012; 119 (10) 2152-2160
- 75 Clayton LM, Dévilé M, Punte T , et al. Retinal nerve fiber layer thickness in vigabatrin-exposed patients. Ann Neurol 2011; 69 (5) 845-854
- 76 Cronin TH, Hertle RW, Ishikawa H, Schuman JS. Spectral domain optical coherence tomography for detection of foveal morphology in patients with nystagmus. J AAPOS 2009; 13 (6) 563-566
- 77 Thomas MG, Kumar A, Thompson JR, Proudlock FA, Straatman K, Gottlob I. Is high-resolution spectral domain optical coherence tomography reliable in nystagmus?. Br J Ophthalmol 2013; 97 (4) 534-536
- 78 Thomas MG, Kumar A, Mohammad S , et al. Structural grading of foveal hypoplasia using spectral-domain optical coherence tomography a predictor of visual acuity?. Ophthalmology 2011; 118 (8) 1653-1660
- 79 Thomas MG, Kumar A, Kohl S, Proudlock FA, Gottlob I. High-resolution in vivo imaging in achromatopsia. Ophthalmology 2011; 118 (5) 882-887
- 80 Papageorgiou E, McLean RJ, Gottlob I. Nystagmus in childhood. Pediatr Neonatol 2014; 55 (5) 341-351
- 81 Thomas S, Thomas MG, Andrews C , et al. Autosomal-dominant nystagmus, foveal hypoplasia and presenile cataract associated with a novel PAX6 mutation. Eur J Hum Genet 2014; 22 (3) 344-349
- 82 Grainger BT, Papchenko TL, Danesh-Meyer HV. Optic nerve atrophy in adrenoleukodystrophy detectable by optic coherence tomography. J Clin Neurosci 2010; 17 (1) 122-124
- 83 Aquino JJ, Sotirchos ES, Saidha S, Raymond GV, Calabresi PA. Optical coherence tomography in x-linked adrenoleukodystrophy. Pediatr Neurol 2013; 49 (3) 182-184
- 84 Noval S, Contreras I, Sanz-Gallego I, Manrique RK, Arpa J. Ophthalmic features of Friedreich ataxia. Eye (Lond) 2012; 26 (2) 315-320
- 85 Seyer LA, Galetta K, Wilson J , et al. Analysis of the visual system in Friedreich ataxia. J Neurol 2013; 260 (9) 2362-2369
- 86 Rosenberg R, Halimi E, Mention-Mulliez K, Cuisset JM, Holder M, Defoort-Dhellemmes S. Five year follow-up of two sisters with type II sialidosis: systemic and ophthalmic findings including OCT analysis. J Pediatr Ophthalmol Strabismus 2013; 50 Online: e33-e36
- 87 Rudich DS, Curcio CA, Wasserstein M, Brodie SE. Inner macular hyperreflectivity demonstrated by optical coherence tomography in niemann-pick disease. JAMA Ophthalmol 2013; 131 (9) 1244-1246
- 88 Orlin A, Sondhi D, Witmer MT , et al. Spectrum of ocular manifestations in CLN2-associated batten (Jansky-Bielschowsky) disease correlate with advancing age and deteriorating neurological function. PLoS ONE 2013; 8 (8) e73128